
Spinal Code: Automatic Code Extraction for Near-User
Computation in Fogs

Bongjun Kim
POSTECH

Pohang, Republic of KOREA
bong90@postech.ac.kr

Seonyeong Heo
POSTECH

Pohang, Republic of KOREA
heosy@postech.ac.kr

Gyeongmin Lee
POSTECH

Pohang, Republic of KOREA
paina@postech.ac.kr

Seungbin Song
Yonsei University

Seoul, Republic of KOREA
seungbin@yonsei.ac.kr

Jong Kim
POSTECH

Pohang, Republic of KOREA
jkim@postech.ac.kr

Hanjun Kim∗

Yonsei University
Seoul, Republic of KOREA

hanjun@yonsei.ac.kr

ABSTRACT
In the Internet of Things (IoT) environments, cloud servers integrate
various IoT devices including sensors and actuators, and provide
new services that assist daily lives of users interacting with the
physical world. While response time is a crucial factor of quality of
the services, supporting short response time is challenging for the
cloud servers due to a growing number and amount of connected
devices and their communication. To reduce the burden of the cloud
servers, fog computing is a promising alternative to offload com-
putation and communication overheads from the cloud servers to
fog nodes. However, since existing fog computing frameworks do
not extract codes for fog nodes fully automatically, programmers
should manually write and analyze their applications for fog com-
puting. This work proposes Spinal Code, a new compiler-runtime
framework for near-user computation that automatically partitions
an original cloud-centric program into distributed sub-programs
running over the cloud and fog nodes. Moreover, to reduce response
time in the physical world, Spinal Code allows programmers to
annotate latency sensitive actuators in a program, and optimizes
the critical paths from required sensors to the actuators when it
generates the sub-programs. This work implements 9 IoT programs
across 4 service domains: healthcare, smart home, smart building
and smart factory, and demonstrates that Spinal Code successfully
reduces 44.3% of response time and 79.9% of communication on the
cloud compared with a cloud-centric model.

CCS CONCEPTS
• Hardware → Emerging languages and compilers; • Soft-
ware and its engineering→ Distributed programming languages.

∗The corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CC ’19, February 16–17, 2019, Washington, DC, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6277-1/19/02. . . $15.00
https://doi.org/10.1145/3302516.3307356

KEYWORDS
Internet of Things, IoT, Fog Computing
ACM Reference Format:
Bongjun Kim, Seonyeong Heo, Gyeongmin Lee, Seungbin Song, Jong Kim,
and Hanjun Kim. 2019. Spinal Code: Automatic Code Extraction for Near-
User Computation in Fogs. In Proceedings of the 28th International Conference
on Compiler Construction (CC ’19), February 16–17, 2019, Washington, DC,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3302516.
3307356

1 INTRODUCTION
Interacting with the physical world through IoT devices such as
sensors and actuators, the Internet of Things (IoT) inaugurates
new services such as healthcare and smart home. Figure 1 shows
a quality management example in a smart factory service. In the
example, sensors measure features of each product and send the
measured values (L1...N) to a cloud server. The cloud server calcu-
lates and logs the average and maximum errors (Ea , Em) between
the measured values and their target values (LT), and recalibrates
the machine. If Em is larger than a threshold (Eth), the server also
sends an error notification to registered mobile phones. Here, some
of the actuators are latency sensitive. While the logging latency is
hidden to users, the recalibration latency from the measurement
affects manufacturing throughput and product quality of the fac-
tory. Therefore, reducing response time especially for the latency
sensitive actuators is important to improve quality of the services
(QoS).

While response time is a crucial factor for IoT services to sat-
isfy the users, supporting low response time is challenging for
IoT frameworks. Recent IoT frameworks such as Samsung Smart-
Things [30], Microsoft Flow [26] and IFTTT [15] are cloud-centric
like Figure 1, having their own cloud servers that integrate IoT de-
vices in user environments like thermometers, hygrometers, bulbs
and mobile phones. Although the cloud-centric IoT frameworks
make IoT programming easy by liberating programmers from con-
nectivity management of the devices, communication between a
cloud server and the devices through the Internet may cause un-
predictable delays, harming QoS especially for latency sensitive
actuators like the machines in the smart factory example. More-
over, due to its centralized architecture and a growing number of
connected devices, computation and communication overheads on
their cloud servers are huge and increasing.

87

https://doi.org/10.1145/3302516.3307356
https://doi.org/10.1145/3302516.3307356
https://doi.org/10.1145/3302516.3307356

CC ’19, February 16–17, 2019, Washington, DC, USA B. Kim, S. Heo, G. Lee, S. Song, J. Kim and H. Kim

Ea,Em
Logs

Devices

Clouds

MobileSensors(L1…N)

Internet

Ea=avg(L1…N-LT); Em=max(L1…N-LT);
M.recalibrate(Ea);
addLog(Ea,Em);
if Em>Eth then Mobile.alarm();

MachineProducts

...
Trigger

Figure 1: A smart factory service example

Fog computing [2, 33, 34, 37, 38, 40, 41] can be a promising
alternative to cloud computing that allows fog nodes near user
environments to provide parts of an IoT service. Since the IoT de-
vices communicate with nearby fog nodes instead of a distant cloud
server, the fog computing can tolerate unpredictable latency of
communications through the Internet and support stable QoS espe-
cially for critical paths from sensors to latency sensitive actuators.
Moreover, since fog nodes execute parts of the IoT services and di-
rectly communicate with the devices, the fog computing can offload
computation and communication overheads from the cloud onto
fog nodes, reducing the centralized burdens of the cloud servers.

However, writing an IoT program for fog computing requires a
huge amount of programmers’ efforts. Programmers should ana-
lyze the program to find fog-executable codes and their commu-
nication costs, and manually partition the program into multiple
sub-programs for each fog node. To reduce the programming bur-
den, recent papers propose programming models for fog comput-
ing [7, 8, 14, 27, 35], but they require the programmers to explicitly
describe the fog-executable codes or data flows in the program.
Therefore, the programmers still need to manually analyze their
IoT programs to exploit fog nodes. Moreover, none of them optimize
a critical path to latency sensitive actuators.

This work proposes Spinal Code, a new compiler-runtime frame-
work that automatically partitions a cloud-centric IoT program into
multiple distributed sub-programs running over the cloud and fog
nodes. Given an IoT program with annotations about latency sensi-
tive actuators, the Spinal Code runtime collects online profiling
information such as response time of the latency sensitive actuators
and communication costs between fogs, and dynamically invokes
re-compilation of the cloud-centric program. The Spinal Code
compiler automatically analyzes data flows and critical paths of the
program, and divides the critical paths into multiple sub-programs
with minimal communications. Then, the compiler allocates non-
critical instructions into the sub-programs with minimal communi-
cations after the critical instructions. Finally, the runtime deploys
the partitioned programs to the cloud server and fog nodes.

Since most cloud-centric IoT frameworks [15, 26, 30] are closed
source, this work implements a SmartThings-like cloud-centric IoT
framework and the Spinal Code framework on top of the LLVM
C++ compiler infrastructure [18]. For 9 cloud-centric IoT programs
in 4 IoT services such as healthcare, smart home, smart building
and smart factory, the Spinal Code framework automatically gen-
erates programs for fog computing only with 2 annotations at most,
and reduces response time of the latency sensitive actuators and

Fog

Nodes

Devices

Clouds

Ea=avg(L1…N-LT);
Em=max(L1…N-LT);

M.recalibrate(Ea);
if Em>Eth then
 Mobile.alarm();

addLog(Ea,Em);

Internet

Fog 1 Fog 2

Ea,Em

Mobile Sensors(L1…N) Machine Products

...

Trigger

Figure 2: Fog computing of the smart factory example in Fig-
ure 1

communication amount of the cloud by 44.3% and 79.9% on average
respectively.

The contributions of this paper are:

• The Spinal Code compiler-runtime cooperative framework
that automatically generates and deploys sub-programs for
fog computing from cloud-centric programs
• The Spinal Code compiler that automatically analyzes data
flows of IoT programs with expected communication over-
heads
• The critical path-aware partitioning that reduces response
time to latency sensitive actuators while optimizing commu-
nication among fog nodes and the cloud

2 MOTIVATION
As an IoT service directly interacts with the physical world, re-
sponse time is one of the crucial features that affect QoS. For ex-
ample, since machine recalibration affects production quality and
throughput of the factory in the smart factory example in Figure 1,
some operations in IoT services are latency sensitive. Thus, it is
important for IoT frameworks to reduce response times, especially
for the latency sensitive operations in order to increase the QoS.

However, since many IoT frameworks [15, 26, 30] are cloud-
centric as Figure 3(a), supporting a stable and fast response time is
challenging due to unpredictable Internet communication delays
and centralized computation and communication overheads on
cloud servers. Since all the devices are connected to a cloud server,
and the server executes a whole IoT service program, it is easy for
programmers to write an IoT service program and manage device
connectivities in the cloud-centric frameworks. However, Network
condition between the cloud and the devices is hardly predictable
due to a large physical distance between them and unstable Internet
communication latency. Moreover, since the cloud server is solely
responsible for executing IoT programs and managing numerous
connected devices, this centralized processing gives large compu-
tation and communication burdens to the cloud server. Therefore,
the cloud-centric IoT frameworks have difficulty in assuring a fast
and stable response time for users, degrading QoS.

Fog computing [2, 33, 34, 37, 38, 40, 41] can be a good alternative
system model to the cloud computing. As Figure 3(b) illustrates, in
the fog computing environments, fog nodes are located between
the cloud server and IoT devices, and execute parts of the programs.

88

Spinal Code CC ’19, February 16–17, 2019, Washington, DC, USA

Cloud-centric Program

Logs

Cloud
Runtime

Sensors Machine Mobile
...

Internet

(a) Cloud-centric framework

Logs

Partitioned Programs

Cloud
Runtime

Fog1 Runtime Fog2 Runtime

...
Sensors Machine Mobile

(b) Fog computing framework

...
Sensors

Logs

Cloud
Cloud-centric Program

Compiler Runtime
Partition

Runtime Info.

Machine Mobile

Fog1 Runtime Fog2 Runtime

(c) Spinal Code framework

Figure 3: Different structures of IoT frameworks

Table 1: Comparison of fog computing frameworks

Framework Data flow
analysis Partitioning Critical path

awareness
Mobile Fog [14] Manual Manual ×

Giang et al. [7, 8] Manual Manual ×

Wishbone [27] Manual Automatic ×

Kairos [12] Manual Automatic ×

Szydlo et al. [35] Manual Automatic ×

Spinal Code Automatic Automatic ✓

The fog computing efficiently reduces the response time by dis-
tributing parts of programs to fog nodes that are located near end
devices. Figure 2 briefly shows that how the fog computing reduces
the response time and the overheads of the cloud server for the
smart factory example in Figure 1. A fog node Fog 1 calculates
average and maximum errors, and directly sends the errors to Fog
2 that recalibrates the machine. Since devices communicate with
nearby fog nodes instead of the distant cloud server, there is no long
and unpredictable Internet communication from sensing errors to
recalibration, and response time becomes more stable and faster.
Furthermore, the cloud server receives only average and maximum
errors instead of all the sensor values (L1...N), and executes only
the logging operation, so fog computing reduces computation and
communication overheads of the cloud server.

However, manually implementing fog computing requires a lot
of programmers’ efforts. First, programmers should decide how
to partition an entire program into multiple sub-programs and
where to locate each sub-program to fully exploit the fog nodes.
For example, programmers divide the smart factory program in
Figure 1 into multiple sub-programs like Figure 2, and deploy the
sub-programs at appropriate locations. Programmers should also
synchronize sub-programs for the cloud and the fog nodes like the
communication between Fog 1 and Fog 2 in Figure 2. Moreover,
since dynamic runtime conditions such as network bandwidth can
affect optimal partitioning, it is difficult for manual partitioning to
reflect runtime information on its partitions.

Moreover, fog computing should be aware of critical paths of IoT
programs. In an IoT program, only parts of actuators are latency
sensitive while the others not. In the smart factory example, the
recalibration latency from the sensors to themachine directly affects
manufacturing throughput while logging average and maximum
errors not. Since fog nodes have limited computation power, fog

nodes should execute critical paths first that affect response time
of the latency sensitive actuators like Figure 2.

Recent works [7, 8, 14, 27, 35] try to reduce the programming
burden with new programming models for fog computing. Mobile
Fog [14] and Giang et al. [7, 8] propose APIs and a distributed data
flow programming model respectively that allow programmers
to specify fog-executable sub-programs and their communication.
Although the APIs and the distributed data flow programming
model simplify fog computing programming, programmers should
write multiple sub-programs with explicit communication. Wish-
bone [27], Szydlo et al. [35] and Kairos [12] propose frameworks
that automatically transform a single data flow program into multi-
ple sub-programs. However, the frameworks still require program-
mers to analyze and describe data flows of their programs. More-
over, none of them optimizes a critical path to latency sensitive
operations. Table 1 summarizes the features of the fog comput-
ing frameworks. Section 7 describes more existing works about
programming models for fog computing and automatic code parti-
tioning for heterogeneous environments.

3 OVERVIEW: SPINAL CODE FRAMEWORK
Spinal Code is a compiler-runtime cooperative framework that
automatically partitions a cloud-centric IoT program into multiple
distributed sub-programs running over the cloud and fog nodes.
Figure 3 (c) illustrates the overall structure of the Spinal Code
framework. The framework consists of the Spinal Code compiler
that runs on only the cloud server and the Spinal Code runtime
that runs on the cloud server and fog nodes.

The Spinal Code framework allows IoT service programmers to
write their IoT programs as a single cloud-centric program without
considering fog nodes. The Spinal Code framework uses a similar
programming model with Samsung SmartThings [30] where all the
devices are connected to a cloud server and represented as objects. A
program can communicate data and commands with the devices by
invoking member functions of their corresponding objects. When
executing the program, the Spinal Code framework provides map-
pings between the language-level objects and the physical devices.
For example, in the smart factory program of Figure 1, the Mobile
object represents the mobile phone, and the program can send an
alarm to the mobile phone by calling Mobile.alarm().

Given the cloud-centric program, the Spinal Code compiler
automatically analyzes the program and transforms the program

89

CC ’19, February 16–17, 2019, Washington, DC, USA B. Kim, S. Heo, G. Lee, S. Song, J. Kim and H. Kim

into multiple sub-programs for the cloud server and fog nodes. To
guarantee the correct program order and the consistency among
sub-programs across the cloud and fog nodes, the compiler analyzes
dependence among instructions in the original program, and makes
partitions with communication codes reflecting the dependence.
Moreover, the compiler allows programmers to optionally give pri-
ority to latency sensitive operations, and makes the operations to
precede in advance of other non-critical instructions in the par-
titioned codes. Here, the compiler exists only at the cloud server
because the cloud server has the original cloud-centric program
and enough computation power to support data flow analysis and
distributed code generation for heterogeneous devices. Section 4
describes the Spinal Code compiler in detail.

The Spinal Code runtime collects performance metrics and
manages deployment and communication of sub-programs that the
Spinal Code compiler generates. While executing IoT programs,
the cloud server and fog nodes silently collect performance metrics
such as response time of the programs and network bandwidth
and latency between the cloud and fog nodes. The cloud period-
ically decides whether to re-compile the original or partitioned
programs based on the collected metrics, enabling the Spinal Code
framework to reflect dynamically changing network environments.
Moreover, the runtime copies partitioned sub-programs from the
cloud to fog nodes, and executes the new sub-programs by support-
ing communication among the cloud and fogs. Finally, the runtime
also manages device connectivity, and maps objects in IoT programs
onto physical devices. Section 5 describes the Spinal Code runtime
in detail.

4 SPINAL CODE COMPILER
This section describes how the Spinal Code compiler automatically
partitions an original cloud-centric program considering critical
paths of the program. Figure 4 illustrates the overall compilation
process of the compiler. Given re-compilation requests from the
Spinal Code runtime, the Spinal Code compiler takes a target
program, device locations and performance metrics from online
profiling such as response times and communication latencies as
its inputs. With the inputs, the compiler marks device method
calls with their anchor locations or criticality (Section 4.1). Then,
the compiler analyzes dependences among instructions, estimates
communication costs for each dependence edge, and generates
weighted program dependence graph (PDG) (Section 4.2). Finally,
the compiler makes efficient partitions based on the weighted PDG,
and inserts communication code for the partitions (Section 4.3).

4.1 Marking
In the marking step, the Spinal Code compiler first finds device
method calls and @critical annotated method calls. First, given
device locations from the runtime, the compiler marks the device
method calls with the locations of their corresponding devices
called anchors. An anchor can be a cloud server or a fog node
if a method call should pass through the cloud or the fog. The
compiler will use the anchor to reflect the communication delay
from the device method. Second, if a method call is annotated as
@critical, indicating a latency sensitive operation, the compiler
alsomarks the call as time-critical. The compiler will analyze critical

Cloud-centric Program

Marking (Section 4.1)

Marked IR Code

Cloud Fog 1

Partition (Section 4.3)

Program Dependence Analysis (Section 4.2)

Weighted Program Dependence Graph

Graph

Coloring

…

Communication

Code Insertion

Finalization

 Weighted

Cost Graph

Generation

br i1 %cmp, label %if.then, label %if.end

%cmp = icmp ugt i32 %2, 200

store i32 %call, i32* %e, align

%2 = load i32, i32* %e, align 4

4

4

4[allocated size]

1[signal size]

• Unnecessary code elimination
• Original code replacement
• Dead lock analysis

Pre-coloring

• Cloud-specific code Cloud

Some Fog • Anchor node or

%1 = consume(1)

...

produce(1,%cmp)

br i1 %cmp, label

...

produceMemDep(1)

produce(0,%1)

...

%cmp = consume(0)

br i1 %cmp, label

...

consumeMemDep(0)

Anchor

Marking

Criticality

Marking

Sensor *sensor = getResource(”Sensor”);
float l = sensor->read();

Machine *M = getResource(“Machine”);
@critical M->recalibrate(avg);

!critical

Device Locations & Performance Metrics

Sensor *sensor = getResource(”Sensor”);
float l = sensor->read();

Machine *M = getResource(“Machine”);
@critical M->recalibrate(avg);

!Fog1

PDG Generation • Data / Control / Memory Dependences

Cloud

• Critical paths

Figure 4: Overall compilation process of Spinal Code

paths from required sensors to the anchors of the time-critical
calls, and make partitions that execute the critical paths as soon as
possible.

4.2 Weighted Program Dependence Analysis
With the marked program, the Spinal Code compiler analyzes pro-
gram dependences and communication costs among instructions,
and generates a weighted PDG. First, the compiler analyzes control
and data dependences with several known algorithms [6, 22, 28, 29],
and generates a PDG. To reduce false positive memory dependences

90

Spinal Code CC ’19, February 16–17, 2019, Washington, DC, USA

1 void verify() {

2 float Esum = 0.0;

3 float Emax = 0.0;

4 for(int i=0; i<N; i++) {

5 l = sensors[i].read();

6 e = abs(l-l_target);

7 Esum = Esum + e;

8 if (e > Emax)

9 Emax = e;

10 }

11 float Eavg = Esum / N;

12 @critical M.recal(Eavg);

13 addLog(Eavg, Emax);

14 if (Emax > Eth)

15 Mobile.alarm("Error");

16 }

(a) Pseudo code

2 3 4 5

6

7 8 9

Fog1 ...

11

12

Fog2 Cloud

13 15

4,1 4,1
1,N

4,N 1,N

4,1
1,N

4,N

4,1

4,1 1,1

14

4,1

4,N

4,1 8,1 8,1

(b) Weighted PDG

2 3 4 5

6

7 8 9

Fog1 ...

11

12

Fog2 Cloud

13 15

4,1 4,1
1,N

4,N 1,N

4,1
1,N

4,N

4,1

4,1 1,1

14

4,1

4,N

4,1 8,1 8,1

(c) Critical path colored PDG

2 3 4 5

6

7 8 9

Fog1 ...

11

12

Fog2 Cloud

13 15

4,1 4,1
1,N

4,N 1,N

4,1
1,N

4,N

4,1

4,1 1,1

14

4,1

4,N

4,1 8,1 8,1

(d) Fully colored PDG

Figure 5: Pseudo code of the smart factory example in Figure 1 and its partitioning process

in the PDG, the compiler also executes flow-sensitive data depen-
dence analysis [13] on memory operations, so creates a memory
dependence edge considering a program execution flow.

Second, the compiler estimates communication costs among
instructions and marks the costs on the edges of the PDG. A de-
pendence edge between two instructions in the PDG means that
communication is required if the two instructions are placed in dif-
ferent nodes like a cloud server and a fog node. Thus, the compiler
estimates communication costs from the data size, the invocation
counts of the edges and online profiling results such as communi-
cation latencies and bandwidths between nodes from the Spinal
Code runtime. Figure 5(b) shows that how the compiler estimates
and marks the communication costs of the smart factory program
in Figure 5(a). Since the program repeats a loop for N times, the
weights of the edges within the loop become a multiple of N .

4.3 Partitioning
From the weighted PDG, the Spinal Code compiler marks anchors
on instructions with fixed locations (pre-coloring), assigns locations
of the other instructions considering critical paths and communica-
tion costs (coloring), makes partitions with communication code
insertion for partitioned edges (communication code insertion), and
executes sanity checks for the partitioned code (finalization).

Pre-coloring: In the pre-coloring step, the compiler assigns col-
ors to anchors and cloud-exclusive codes. A color is a unique ID
assigned to the cloud and fog nodes. Through pre-coloring, the
compiler can fix a location of particular code. Since anchors are al-
ready marked with their locations in the marking step (Section 4.1),
the compiler just assigns the colors of the anchor locations to them.
Here, cloud-exclusive codes are instructions such as I/O and locks
that should be executed on a cloud server. For example, if two differ-
ent programs share a variable and access it atomically, programmers
should use atomic regions and locks in the original programs, and

the compiler marks the atomic regions and locks as cloud-exclusive
codes and executes them in the cloud server.

Coloring: The compiler colors instructions in two phases: (i)
coloring instructions in critical paths and (ii) coloring the others.
First, from the time-critical calls that are marked at the marking
step, the compiler finds all the required instructions for the calls by
recursively tracing sources of dependences to the time-critical calls,
and constructs critical paths. Then, the compiler colors the critical
paths with a coloring algorithm in Algorithm 1. Figure 5(c) shows
the PDG after the compiler colors critical paths. After coloring the
critical paths, the compiler colors the other instructions with the
same algorithm. Figure 5(d) shows the colored PDG. In this way,
the compiler makes partitions while giving higher priority to the
critical paths.

The coloring algorithm inAlgorithm 1 calculates expectedlosses
when each color is assigned to an instruction, and chooses the color
that minimizes the loss for each instruction. Here, a loss is
the sum of expected data communication latencies from/to other
locations reflecting network latencies and bandwidth. Here, the
compiler allows system administrators to adjust a burden of the
cloud by multiplying a weight to the loss value of the cloud.

Communication code insertion: After coloring instructions,
the compiler makes partitions for the cloud and fogs, and inserts
communication code to respect dependences between partitions.
According to colors, the compiler assigns instructions into their
corresponding partitions. If a source and a destination of an edge
in the colored PDG have different colors, the compiler inserts com-
munication codes such as produce and consume at the source
and the destination codes. Figure 6 shows how the compiler inserts
communication code to each partition. For example, in Figure 5(d),
there is a data dependence edge from Instruction 11 (Colored as
Fog 1) to Instruction 13 (Colored as Cloud). Therefore, the compiler
inserts a produce function call into the partition of Fog 1 that

91

CC ’19, February 16–17, 2019, Washington, DC, USA B. Kim, S. Heo, G. Lee, S. Song, J. Kim and H. Kim

Algorithm 1: The Coloring Algorithm
Input: A cost graph G = (V ,E), the number of colors N , a

cloud burden weightw , and the network bandwidth
information between nodes

Output: A coloring table C that contains the assigned
colors of all nodes in G

1 while there exists an uncolored node in G do
2 v ← Find an uncolored vertex with the largest number

of colored neighbors in G ;
3 color← 1 ;
4 minLoss← 0 ;
5 for i ← 1 to N do
6 loss← 0 ;
7 if i = colorcloud then λ← w ;
8 else λ← 1;
9 foreach edge e = (v,v ′) or (v ′,v) where v ′ is a

colored vertex in V do
10 color′ ← C[v ′] ;
11 if i , color′ then
12 µ ← the network bandwith between nodei

and nodecolor′ ;
13 loss← loss + λ · e .weiдht

µ ;
14 end
15 end
16 if loss < minLoss then
17 color← i ;
18 minLoss← loss ;
19 end
20 end
21 C[v] ← color ;
22 end

sends Eavg to Cloud, and inserts a consume function call into
the partition of Cloud that receives Eavg from Fog 1.

Finalization: In the final step, the compiler checks sanity of
the partitioned sub-programs, and replaces the original code into
the partitioned ones. The compiler analyzes the produce and
consume pairs and control flows of partitioned programs, and
checks whether deadlock and data races can occur across partitions.
Then, the compiler replaces the original code into the new parti-
tioned programs by sending a deploy request to the Spinal Code
runtime.

5 SPINAL CODE RUNTIME
To support efficient execution of partitioned sub-programs, the
Spinal Code runtime monitors online profiling results, dynami-
cally invokes re-compilation of the original cloud-centric program,
deploys the partitioned sub-programs, manages device connectiv-
ity and supports produce and consume communications among
the partitioned programs. The Spinal Code runtime operates in
two phases: pre-execution and program execution. Section 5.1 and
Section 5.2 describe each phase in detail.

1 void verify_fog1() {

2 // lines 2-10 in the original code

3 produce(fog2, Esum);

4 produce(cloud, Emax);

5 bool isExec = Emax > Eth;

6 produce(fog2, isExec);

7 }

8

9 void verify_fog2() {

10 float Esum = consume(fog1);
11 float Eavg = Esum / N;

12 M.recal(Eavg);

13

14 produce(cloud, Eavg);

15 bool isExec = consume(fog1);
16 if(isExec)

17 Mobile.alarm("Error");

18 }

19

20 void verify_cloud() {

21 float Eavg = consume(fog2);
22 float Emax = consume(fog1);
23 addLog(Eavg, Emax);

24 }

Figure 6: Partitions of pseudo code in Figure 5

5.1 Pre-execution Phase
The pre-execution phase of the Spinal Code runtime includes on-
line profiling, re-compilation invocation and deploying re-compiled
partitioned programs to fog nodes.

Online profiling: To optimize a program reflecting dynamic
execution environments, the runtime has a performance monitor
that silently measures communication costs among the cloud and
fog nodes and response time of each program. As in Figure 7, the
performance monitor has two tables such as a communication cost
table and a program table. The communication cost table contains
network conditions such as network latencies among the cloud and
the fog nodes, and the runtime periodically measures and updates
the network conditions in the table. The program table maintains
profiled response time of an original program and partitioned sub-
programs for each program. In the program table of Figure 7, a
highlighted entry represents the target program to be partitioned.
For the program ’verify’ that is already running as a cloud-centric
version, the performance monitor can invoke re-compilation of the
program to partition the program into multiple sub-programs (Step
0○).
Re-compilation invocation: The re-compilation can be in-

voked directly by a user or by the performance monitor in the
runtime based on the collected response time of each program.
When re-compilation is invoked, the runtime passes device loca-
tions in the device manager and the communication cost table in the
performance monitor to the Spinal Code compiler (Step 1○). Then,
the compiler generates newly partitioned sub-programs from the
original cloud-centric program (Step 2○). Here, the Spinal Code

92

Spinal Code CC ’19, February 16–17, 2019, Washington, DC, USA

PID Program Original
Latency

Spinal
Latency

Spinal
Nodes

56 verify 52ms - N→Y
25 power 22ms 2.3ms Y
43 fireAlarm 23ms - N
… … … … …

DevID ObjID URI
12 sensors[0] /ruler/0
13 sensors[1] /ruler/1
24 Machine[0] /machine/0
27 Mobile[0] /mobile/0
… … …

Device
Manager

FogID IP
Cloud 1.1.1.1
Fog2 1.0.1.2

Installed
codes

① Get Anchor & Latency

③ Deploy

Spinal Code Runtime

Installed
codes ⑤ M.recal(!"#$)

Cloud

Fog1

Device Location
Ruler Fog1

Machine Fog2
… …

Group Latency
C-F1 L1

Cl-F2 L2

F1-F2 L3

Performance
Monitor

② Deliver Profiling Info.

DevID ObjID URI
12 sensors[0] /ruler/0
13 sensors[1] /ruler/1

Device Manager Comm. Manager

Data
Buffer

FogID IP
Cloud 1.1.1.1
Fog1 1.0.1.1

Installed
codes

Fog2

DevID ObjID URI
12 Machine[0] /machine/0
13 Mobile[0] /mobile/0

Device ManagerComm. Manager

Data
Buffer

④ produce (fog2, !%&') ④ !%&' =
consume (fog2)

FogID IP
Cloud 1.1.1.1
Fog1 1.0.1.1

Comm.
Manager Data

Buffer

Deployment
Manager

Re-compile

Spinal Code
Compiler

Spinal
codes

Original
code

0

Figure 7: The overall structure of the Spinal Code runtime

compiler partitions a program with default runtime costs in case of
the initial compilation.

Deployment: Given a deployment request after the re-compilation,
the deployment manager in the cloud server installs the new par-
titioned sub-programs to their corresponding fog nodes (Step 3○).
In order to allow fog nodes to interact with the connected devices,
the runtime copies device information entries from the cloud to the
fog nodes before executing the programs.

5.2 Program Execution Phase
To enable correct and efficient execution of the partitioned sub-
programs, the Spinal Code runtime mediates data and signal com-
munication among fog nodes, and maintains connectivity informa-
tion of IoT devices.

Communication management: To guarantee the correct exe-
cution of the partitioned sub-programs, the runtime mediates data
and signal communication among the cloud and fog nodes. For
example in Figure 6, Fog 1 should produce Esum for Fog 2 to re-
spect the data dependence between Instruction 7 and Instruction 11
(Step 4○). When the produce function is called, the runtime stores
the target data to the data buffer in the communication manager,
and sends the data to the target fog. Here, to amortize the commu-
nication overheads, the runtime batches multiple data entries and
sends them together.

Connectivity management: As the programming model of
the Spinal Code framework represents a physical IoT device as
an object, the runtime should hold mapping information between
the object at the language level and the device Uniform Resource
Identifier (URI) at the system level. The device managers in the
cloud and fog nodes assign a unique device ID for each device, and
keep the mapping information and the device ID at their device

tables. When an IoT program registers a new device, the device
manager creates a new device ID and stores the ID, the URI and its
corresponding object in the program into the device table. Moreover,
the device manager immediately synchronizes the device table with
the cloud and the fog nodes to make the new device accessible by
the others. Then, the cloud maintains all the IoT devices that are
connected to the Spinal Code framework. When a sub-program
tries to communicate with an IoT device, the runtime translates the
communication request into a system level communication using
the URI in the device table.

6 EVALUATION
This work implements a prototype Spinal Code framework on the
LLVM compiler infrastructure [18]. This work designs and imple-
ments 9 cloud-centric IoT programs in 4 service domains: healthcare,
smart home, smart building, and smart factory. Table 2 briefly sum-
marizes the IoT programs in each service domain. All the services
are implemented in the C++ programming language, extending the
exisiting benchmarks used in Esperanto framework [19].

In the evaluation, the Spinal Code framework uses one cloud
running on an Amazon EC2 instance and multiple fog nodes run-
ning on desktop servers. Also, to set up more realistic evaluation en-
vironment, the IoT programs exploit various third-party IoT devices
ranging from small development boards with sensors to desktop
servers. Those third-party devices are connected to either the cloud
or some fog node according to prescribed connection topologies for
each service. Table 3 describes the detailed device specifications for
each IoT service. Moreover, sensors and actuators are connected
to public wireless APs, and fog nodes are connected to different
public gateways in different rooms in the same building.

93

CC ’19, February 16–17, 2019, Washington, DC, USA B. Kim, S. Heo, G. Lee, S. Song, J. Kim and H. Kim

Table 2: Evaluated program description
(CP: the number of critical paths, F: the number of fogs)

Service Program CP F Description

Healthcare
Sleep 1 1 Track sleep state and

change bulb’s brightness

Heart 1 1 Check heart rate and notify
heart attack to a hospital

Smart
Home

Baby 1 1 Monitor a baby and notify
when baby is crying

Pet 1 1 Track pet’s location and
notify when pet goes too far

Weather 1 1 Check outdoor humidity
and blink a bulb

Smart
Building

Security 1 1 Capture and recognize face
and send the image to mobile

Fire 2 1 Recognize a fire and notify
people and a hospital

Smart
Factory

Quality 1 2 Check quality of products
and recalibrate a machine

Power 1 1 Meter power usage of a factory
and turn off at emergency

6.1 Benchmark Description
This section describes the scenarios of 9 IoT programs used for eval-
uation of the Spinal Code framework. Table 2 briefly summarizes
the IoT programs in each service domain.

Healthcare includes two programs, Sleep and Heart, which
help userswith health caring or health information tracking.Sleep
periodically tracks sleep state of a user through a smart watch (Fog)
and stores logs in a remote drive (Cloud). If the program recognizes
a change in the user’s sleep state, it adjusts the brightness of a bulb
(Fog, Critical). Similarly, Heart periodically tracks heart rate of
a user through a smart watch (Fog) and stores logs in a remote
drive (Cloud). If the program detects abnormal heart rate, it sends a
notification message to the nearest hospital server (Cloud, Critical).
Its lines of code for original and manual versions are 122 and 188
respectively.

SmartHome includes three programs,Baby,Pet, andWeather,
which provide various services in living environments. Baby im-
plements a baby monitor service where an IP camera (Fog) takes a
picture of a baby every minute and checks its situation. If an emer-
gency situation occurs, the program sends an alarm to a mobile
(Fog, Critical) and stores the picture in a remote drive (Cloud). Pet
periodically tracks the location of a pet (Fog). If the program finds
that the pet goes too far from home, it sends an alarm and a picture
of the pet’s nearby scenery to a mobile (Fog, Critical). Weather is
a simple program that notifies a user when a weather board (Fog)
senses rain by blinking a bulb (Fog, Critical) of the user. Its lines of
code for original and manual versions are 124 and 158 respectively.

Smart Building includes two programs, Security and Fire,
to make a building secure and safe. Security uses an IP camera
(Fog) to capture an image of a visitor’s face. Using face recognition,
it detects an unregistered visitor and sends a picture of the visitor
to a mobile (Fog, Critical). Fire provides a fire alarm service that
checks whether a fire occurs using weather boards (Fog). If a fire
is detected on one of the weather boards, it sends an alarm to
a mobile (Fog, Critical) and notifies the nearest hospital server
(Cloud, Critical). Unlike other programs, Fire has two critical
paths towards alerting the mobile or notifying the hospital server.

Table 3: IoT device specification for each service

Service Device Specification

Common
Devices

Cloud AWS EC2 t2.micro instance

Fog Desktop Server A, B
(Intel Xeon CPU E5-2637 v4, 64GB)

Healthcare

Hospital Server Desktop Server C
(Intel Core i7-6700, 16GB)

Remote Drive Desktop Server D
(Intel Core i7-6700, 16GB)

Bulb Philips Hue
Smart Watch Xiaomi Mi Band

Smart
Home

IP Camera ODROID-XU4 with USB-CAM 720P
(Samsung Exynos 5422, 2GB)

Mobile Samsung Galaxy S5
(Qualcomm Snapdragon 801, 3GB)

Weather Board ODROID-XU4 with Weather Board 2
Remote Drive Desktop Server D
Bulb Philips Hue

Smart
Building

IP Camera ODROID-XU4 with USB-CAM 720P
Weather Board ODROID-XU4 with Weather Board 2
Hospital Desktop Server C
Mobile Samsung Galaxy S5

Smart
Factory

Power Meter ODROID-XU4 with Smart Power 2
Remote Drive Desktop Server D
Machine ODROID-XU4
Mobile Samsung Galaxy S5
Weather Board ODROID-XU4 with Weather Board 2

Its lines of code for original and manual versions are 186 and 196
respectively.

Smart Factory includes two programs, Quality and Power,
which automate factory management. Quality implements the
smart factory example in Figure 1. As Section 1 describes, the pro-
gram collects the measured values of sensors (Fog 1) and calculates
the average and maximum errors. With the average error, it sends
a recalibration request to a machine (Fog 2, Critical). Also, if the
maximum error exceeds a threshold, it sends a message to a mobile
(Fog 2). The program records the average and maximum errors in
a remote drive (Cloud). Power manages power usage of a factory
by measuring power usage with power meters (Fog) and logging
it in a remote drive (Cloud). When the total power usage exceeds
a threshold, it sends a power interruption command to a certain
power meter (Critical). Its lines of code for original and manual
versions are 113 and 161 respectively.

6.2 Response Time Analysis
This work measures the response time of 9 cloud-centric IoT pro-
grams for three models: ‘Cloud’, ‘Spinal’, and ‘Manual’ as Figure 8
shows. ‘Cloud’ is a model where the cloud executes all operations
of an original cloud-centric program without partitioning. ‘Spinal’
is the model of the Spinal Code framework where the Spinal
Code compiler automatically partitions the original program into
multiple sub-programs, and the cloud and fog nodes collaboratively
execute the entire program operations. ‘Manual’ is a model where
a programmer manually partitions the original program for fog
computing. The response time of a program is measured from the
start to the end of the critical path in the program. Especially, Fire
contains two critical paths, so the response time is measured for
each critical path, Fire(alarm) and Fire(noti).

On average, the ‘Spinal’ model reduces the response time by
44.3% compared with the ‘Cloud’ model. Except Heart and Fire,

94

Spinal Code CC ’19, February 16–17, 2019, Washington, DC, USA

0
20
40
60
80

100
120
140

Sleep Heart Baby Pet Weather Security Fire(alarm) Fire(noti) Quality Power
Healthcare Smart Home Smart Building Smart Factory

R
es

po
ns

e
Ti

m
e

(m
s)

Cloud Spinal Manual

Figure 8: Response time of 9 IoT programs

0
50

100
150
200
250
300
350

C S M C S M C S M C S M C S M C S M C S M C S M C S M
Sleep Heart Baby Pet Weather Security Fire Quality Power

Healthcare Smart Home Smart Building Smart Factory

C
om

m
un

ic
at

io
n

A
m

ou
nt

 (B
yt

e)

Cloud-device communicat ion Cloud-fog communication

150K 150K

(a) Communication amount

0

2

4

6

8

10

12

C S M C S M C S M C S M C S M C S M C S M C S M C S M
Sleep Heart Baby Pet Weather Security Fire Quality Power

Healthcare Smart Home Smart Building Smart Factory

C
om

m
un

ic
at

io
n

C
ou

nt

Cloud-device communicat ion Cloud-fog communication

(b) Communication count

Figure 9: Communication amount and count of 9 IoT programs

0

100

200

300

400

500

n=1 n=10 n=100 n=1 n=10 n=100 n=1 n=10 n=100
Fire Quality PowerC

om
m

un
ic

at
io

n
A

m
ou

nt
 (B

yt
e)

Cloud Spinal Manual

3.6K 3.7K 836

(a) Communication amount

0

5

10

15

20

25

30

n=1 n=10 n=100 n=1 n=10 n=100 n=1 n=10 n=100
Fire Quality Power

C
om

m
un

ic
at

io
n

C
ou

nt

Cloud Spinal Manual

200 208 202

(b) Communication count

Figure 10: Communication amount and count over the different numbers of devices

the ‘Spinal’ model always outperforms the ‘Cloud’ model. In case of
Heart, the program requires mandatory communication with the
cloud, thus the Spinal Code framework cannot fully exploit the
advantages of fog computing for Heart. This problem is also in-
evitable in manual partitioning, so ‘Manual’ shows worse response
time than ‘Cloud’ for Heart. In case of Fire, the program has
two different critical paths and the compiler more focuses on op-
timizing one of the critical paths. Therefore, a little performance
degradation occurs on the other critical path.

For several programs such as Quality, the ‘Spinal’ model
shows fairly worse response time than the ’Manual’ model, which
performs (almost) ideal partitioning. This is because the Spinal
Code compiler conservatively analyzes memory dependence, caus-
ing unnecessary communication among partitions. For example, for
the smart factory code in Figure 5(a), the compiler conservatively
inserts communication code for the global variable Eth because
the variable might be changed by others. On the other hand, a
programmer knows that Eth is not changed, and does not insert
communication code for Eth in the ’Manual’ model.

95

CC ’19, February 16–17, 2019, Washington, DC, USA B. Kim, S. Heo, G. Lee, S. Song, J. Kim and H. Kim

In Baby, Spinal Code obtains better performance than manual
partitioning because the ’Manual’ model is manually partitioned
in the C++ language level rather than the instruction level and the
parts of non-critical instructions are executed before critical paths.

6.3 Communication Analysis
To evaluate how effectively the Spinal Code framework reduces the
communication burden of the cloud server, this work also measures
communication counts and amounts of the cloud server for the
9 IoT programs. Figure 9(a) shows the communication amount
of the cloud server for the three models such as ‘Cloud’, ‘Spinal’,
and ‘Manual’. Compared with the ‘Cloud’ model, the Spinal Code
framework reduces 79.9% of the communication amount of the
cloud server on average. The Spinal Code framework reduces
more than 99.9% of the communication amount of the cloud server
for Baby and Security because the fog node sends an image file
to a mobile without passing through the cloud server in the ‘Spinal’
model.

While the ‘Manual’ model always reduces the communication
amount of the cloud server, the ‘Spinal’ model increases the com-
munication amount for four programs such as for 4 programs such
as Sleep, Heart, Fire, and Power. Unlike the ‘Manual’ model
that executes only required communication, the Spinal Code com-
piler conservatively analyzes memory dependences and inserts
unnecessary communication codes like the Eth case in Figure 5(a).
With more precise static analysis, the compiler can further reduce
the communication amount, and the ‘Spinal’ model can outperform
the ‘Cloud’ model.

Figure 9(b) shows the communication count of the cloud server
for the three models. Although the ‘Manual’ model always outper-
forms the ‘Cloud’ model, the ‘Spinal’ model communicates more
than the ‘Manual’ model. The additional communication count of
the ‘Spinal’ model consists of unnecessary signal communication
and data communication because of conservative static analysis of
the Spinal Code compiler. Similar to the communication amount,
more precise static analysis can reduce the communication count
between the cloud server and fog nodes.

6.4 Scalability Analysis
Although this work evaluates the Spinal Code framework with less
than 10 sensors and actuators, a real-world IoT framework should
support hundreds and thousands of sensors and actuators. This
work evaluates scalability only for the smart building and smart
factory services because they use a large number of sensors such as
weather boards and power meters. By simulating Fire, Quality
and Power with 10 and 100 sensors, this work measures commu-
nication amounts and counts of the cloud server. Figure 10 shows
the communication amounts and counts of the cloud server when
1, 10 and 100 sensors are connected. Since the cloud server directly
communicates with sensors in the ‘Cloud’ model, the communi-
cation amount and count of the ‘Cloud’ model linearly increase
as the number of sensors increases. However, in the ‘Spinal’ and
‘Manual’ models, since all the sensors are connected to fog nodes,
and the fog nodes pre-process the sensor values and deliver the
pre-processed results to the cloud server, the number of connected

sensors does not affect the communication amount and count of
the server.

7 RELATEDWORK
Programming models for fog computing: Fog computing [2,
33, 34, 37, 38, 40, 41] is an emerging system model where a cloud
outsources distributed fog nodes locating closer to end-devices. Fog
computing shares the concept with Cloudlet [31] and Tenet [9];
Spinal Code resembles concepts and enables near-user compu-
tation with fog nodes. However, since the fog computing model
requires laborious programming for heterogeneous and distributed
devices, existing works [7, 8, 14, 21, 35] propose programming mod-
els for fog computing to reduce the programming burden.

Mobile Fog [14] is a high-level programming model that provides
hierarchical abstraction of devices in a platform. By splitting or
merging the geospatial coverage of an overloaded process, Mobile
Fog supports dynamic workload scaling across devices. However,
Mobile Fog forces programmers to describe fog-executable codes
through their APIs, so programmers should analyze and write fog-
executable parts of the program. On the other hand, Spinal Code
automatically analyzes and extracts fog-executable codes from the
program, thus fully reducing the programming burden.

Distributed data-flow models [7, 8, 27, 35] enable integrated
programming of heterogeneous devices where each device takes
part of a sub-flow in the entire service flow. Especially, these models
are suitable for IoT applications, the primary applicable domain
of fog computing. Some models [7, 8] require programmers to
specify which device will run onwhich sub-flow, butWishbone [27],
Kairos [12] and Szydlo et al. [35] propose automatic decomposition
of a service flow to move processing from the cloud to the fog
nodes. However, in the data-flow models, programmers still have to
specify data flows among nodes. Unlike these models, Spinal Code
shifts the analysis and programming burden to the compiler, which
finds data dependence through static analysis and automatically
partitions in view of communication cost. Moreover, none of them
optimizes a critical path to latency sensitive actuations.

Microsoft Azure IoT Edge [25] is a framework that provides
programming APIs for modules to be cooperated with Microsoft
Azure IoT Hub. Azure IoT Hub allows to offload some parts of a
service logic to an Azure IoT Edge device. With the Microsoft Azure
IoT Edge framework, a service programmer can build an efficient
IoT service that can save time and the amount of data transferred
by filtering data sent to the cloud or deploying machine learning
modules on the edge. However, the programmer needs to manually
develop edge modules or possibly partition an original service logic
to utilize Azure IoT Edge.

Automatic code partitioning for heterogeneous environ-
ments: Spinal Code automatically partitions an original cloud-
centric program into multiple sub-programs to offload computation
and communication overheads from cloud servers to fog nodes.
While Spinal Code is a new framework that supports automatic
code partitioning for fog computing, automatic code partitioning
for heterogeneous environments has been widely discussed espe-
cially for mobile-cloud computing [1, 4, 5, 10, 11, 17, 19, 20, 27, 39].
The mobile-cloud offloading frameworks offload computation over-
heads from mobile devices to the cloud servers, and reduce energy

96

Spinal Code CC ’19, February 16–17, 2019, Washington, DC, USA

consumption and computation costs of mobile devices. However,
all the frameworks assume that a mobile device is connected to
a single cloud server. On the other hand, Spinal Code offloads
computation from a cloud server to multiple fog nodes that are
located near multiple sensors and actuators, supporting multi-site
automatic partitioning.

J-Orchestra [36] is an application partitioning system for the
Java language. J-Orchestra offers a profiler and a classifier that
provide information about interdependent relationships among
program objects and classification of platform-specific codes. While
J-Orchestra leaves decisions of allocating the objects to users, the
Spinal Code framework determines appropriate locations of the
objects by automatically generating a cost graph.

There exist several works [3, 16, 23, 24, 32] that model a fog com-
puting system and try to solve a computation offloading problem
with theoretical analysis such as game theory or queuing theory. By
adjusting the models to fit the Spinal Code framework, this work
can utilize the algorithms to improve the partitioning algorithm of
the Spinal Code framework considering various factors such as
energy consumption.

8 CONCLUSION
Spinal Code is a new compiler-runtime framework that fully auto-
matically and efficiently transforms a cloud-centric program into
multiple distributed sub-programs for near-user computation in fog
nodes. Moreover, Spinal Code allows programmers to annotate
latency sensitive operations in a program, optimizes the critical
paths from required sensors to the operations when generating
the sub-programs, and reduces response time of the operations.
This work implements 9 IoT programs across 4 service domains:
healthcare, smart home, smart building and smart factory, and
demonstrates that Spinal Code successfully reduces 44.3% of re-
sponse time and 79.9% of network traffics on the cloud compared
with a cloud-centric model.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.
This research was supported by NRF-2017R1C1B3009332, NRF-
2015M3C4A7065646, IITP-2017-0-00195 and IITP-2018-0-01392 thro-
ugh the National Research Foundation of Korea (NRF) and the In-
stitute of Information and Communication Technology Planning
and Evaluation (IITP) funded by the Ministry of Science and ICT.
This research was also partly supported by the Yonsei university
research fund of 2018.

REFERENCES
[1] Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony Carno, Ho-

Ren Chuang, Vincent Legout, and Binoy Ravindran. 2017. Breaking the Bound-
aries in Heterogeneous-ISA Datacenters. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’17).

[2] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
Computing and Its Role in the Internet of Things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing (MCC ’12).

[3] X. Chen, L. Jiao, W. Li, and X. Fu. 2016. Efficient Multi-User Computation Offload-
ing for Mobile-Edge Cloud Computing. IEEE/ACM Transactions on Networking
(2016).

[4] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. 2011. CloneCloud: Elastic Execution Between Mobile Device and Cloud. In
Proceedings of the Sixth Conference on Computer Systems (EuroSys ’11).

[5] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI: Making Smartphones
Last Longer with Code Offload. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (MobiSys ’10).

[6] Ron Cytron, Jeanne Ferrante, and V. Sarkar. 1990. Compact Representations for
Control Dependence. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI ’90).

[7] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C.M. Leung. 2015.
Developing IoT applications in the fog: a distributed dataflow approach. In Pro-
ceedings of 2015 International Conference on the Internet of Things (IOT ’15).

[8] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C. M Leung. 2015.
Distributed Data Flow: A Programming Model for the Crowdsourced Internet
of Things. In Proceedings of the Doctoral Symposium of the 16th International
Middleware Conference (Middleware Doct Symposium ’15).

[9] Omprakash Gnawali, Ki-Young Jang, Jeongyeup Paek, Marcos Vieira, Ramesh
Govindan, Ben Greenstein, August Joki, Deborah Estrin, and Eddie Kohler. 2006.
The Tenet Architecture for Tiered Sensor Networks. In Proceedings of the 4th
International Conference on Embedded Networked Sensor Systems (SenSys ’06).

[10] Mark S. Gordon, David Ke Hong, Peter M. Chen, Jason Flinn, Scott Mahlke, and
Zhuoqing Morley Mao. 2015. Accelerating Mobile Applications Through Flip-
Flop Replication. In Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys ’15).

[11] Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke, Z. Morley Mao, and Xu
Chen. 2012. COMET: Code Offload by Migrating Execution Transparently. In
Presented as part of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12).

[12] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. 2005.
Macro-programming Wireless Sensor Networks Using Kairos. In Proceedings
of the First IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS’05).

[13] B. Hardekopf and C. Lin. 2011. Flow-sensitive pointer analysis for millions of
lines of code. In International Symposium on Code Generation and Optimization
(CGO 2011).

[14] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder,
and Boris Koldehofe. 2013. Mobile Fog: A ProgrammingModel for Large-scale Ap-
plications on the Internet of Things. In Proceedings of the Second ACM SIGCOMM
Workshop on Mobile Cloud Computing (MCC ’13).

[15] IFTTT 2018. https://ifttt.com.
[16] Ajay Kattepur, Harshit Dohare, Visali Mushunuri, Hemant Kumar Rath, and

Anantha Simha. 2016. Resource Constrained Offloading in Fog Computing. In
Proceedings of the 1st Workshop on Middleware for Edge Clouds & Cloudlets (MECC
’16).

[17] B. Kim, S. Heo, G. Lee, S. Park, H. Kim, and J. Kim. 2016. Heterogeneous Dis-
tributed Shared Memory for Lightweight Internet of Things Devices. IEEE Micro
36, 6 (2016), 16–24.

[18] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization.

[19] Gyeongmin Lee, Seonyeong Heo, Bongjun Kim, Jong Kim, and Hanjun Kim. 2017.
Integrated IoT Programming with Selective Abstraction. In Proceedings of the
18th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES 2017).

[20] Gwangmu Lee, Hyunjoon Park, Seonyeong Heo, Kyung-Ah Chang, Hyogun Lee,
and Hanjun Kim. 2015. Architecture-aware Automatic Computation Offload
for Native Applications. In Proceedings of the 48th International Symposium on
Microarchitecture (MICRO-48).

[21] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr. 2017. Coding for Distributed Fog
Computing. IEEE Communications Magazine (2017).

[22] Yuan Lin and David Padua. 2000. Compiler Analysis of Irregular Memory Ac-
cesses. In Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation (PLDI ’00).

[23] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi. 2017. Multi-objective Opti-
mization for Computation Offloading in Fog Computing. IEEE Internet of Things
Journal (2017).

[24] X. Meng, W. Wang, and Z. Zhang. 2017. Delay-Constrained Hybrid Computation
Offloading With Cloud and Fog Computing. IEEE Access (2017).

[25] Microsoft Azure IoT 2018. https://azure.microsoft.com/en-us/.
[26] Microsoft Flow 2018. https://flow.microsoft.com.
[27] Ryan Newton, Sivan Toledo, Lewis Girod, Hari Balakrishnan, and Samuel Mad-

den. 2009. Wishbone: Profile-based Partitioning for Sensornet Applications. In
Proceedings of the 6th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’09).

[28] William Pugh. 1991. The Omega Test: A Fast and Practical Integer Program-
ming Algorithm for Dependence Analysis. In Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing (Supercomputing ’91).

[29] Radu Rugina and Martin Rinard. 2000. Symbolic Bounds Analysis of Pointers,
Array Indices, and AccessedMemory Regions. In Proceedings of the ACM SIGPLAN

97

https://ifttt.com
https://azure.microsoft.com/en-us/
https://flow.microsoft.com

CC ’19, February 16–17, 2019, Washington, DC, USA B. Kim, S. Heo, G. Lee, S. Song, J. Kim and H. Kim

2000 Conference on Programming Language Design and Implementation (PLDI
’00).

[30] Samsung SmartThings 2018. http://www.smartthings.com.
[31] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. 2009. The Case for

VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing (2009).
[32] K. Sinha and M. Kulkarni. 2011. Techniques for Fine-Grained, Multi-site Com-

putation Offloading. In 2011 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing.

[33] I. Stojmenovic. 2014. Fog computing: A cloud to the ground support for smart
things and machine-to-machine networks. In 2014 Australasian Telecommunica-
tion Networks and Applications Conference (ATNAC).

[34] I. Stojmenovic and S. Wen. 2014. The Fog computing paradigm: Scenarios and
security issues. In 2014 Federated Conference on Computer Science and Information
Systems.

[35] T. Szydlo, R. Brzoza-Woch, J. Sendorek, M. Windak, and C. Gniady. 2017. Flow-
Based Programming for IoT Leveraging Fog Computing. In 2017 IEEE 26th In-
ternational Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE).

[36] Eli Tilevich and Yannis Smaragdakis. 2002. J-Orchestra: Automatic Java Appli-
cation Partitioning. In Proceedings of the 16th European Conference on Object-
Oriented Programming (ECOOP ’02).

[37] Luis M. Vaquero and Luis Rodero-Merino. 2014. Finding Your Way in the Fog:
Towards a Comprehensive Definition of Fog Computing. SIGCOMM Comput.
Commun. Rev. (2014).

[38] P. Varshney and Y. Simmhan. 2017. Demystifying Fog Computing: Characteriz-
ing Architectures, Applications and Abstractions. In 2017 IEEE 1st International
Conference on Fog and Edge Computing (ICFEC).

[39] Cheng Wang and Zhiyuan Li. 2004. Parametric Analysis for Adaptive Com-
putation Offloading. In Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation (PLDI ’04).

[40] S. Yi, Z. Hao, Z. Qin, and Q. Li. 2015. Fog Computing: Platform and Applications.
In 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies
(HotWeb).

[41] Shanhe Yi, Cheng Li, and Qun Li. 2015. A Survey of Fog Computing: Concepts,
Applications and Issues. In Proceedings of the 2015 Workshop on Mobile Big Data
(Mobidata ’15).

98

http://www.smartthings.com

	Abstract
	1 Introduction
	2 Motivation
	3 Overview: Spinal Code Framework
	4 Spinal Code Compiler
	4.1 Marking
	4.2 Weighted Program Dependence Analysis
	4.3 Partitioning

	5 Spinal Code Runtime
	5.1 Pre-execution Phase
	5.2 Program Execution Phase

	6 Evaluation
	6.1 Benchmark Description
	6.2 Response Time Analysis
	6.3 Communication Analysis
	6.4 Scalability Analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

