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Abstract—To expose hidden parallelism from programs with
complex dependences, modern compilers employ memory profil-
ers to augment imprecise static analyses. Since dynamic depen-
dence patterns among instructions can vary widely depending
on the context, such as function call site stack and loop nest
level, context-aware memory profiling is of great value for precise
memory profiling. However, recording memory dependences with
full context information causes huge overheads in terms of CPU
cycles and memory space. Existing profilers mitigate this problem
by compromising precision, coverage, or both. This paper pro-
poses a new precise Context-Aware Memory Profiling (CAMP)
framework that efficiently traces all the memory dependences
with full context information. CAMP statically analyzes a context
tree of a program that illustrates all the possible dynamic
contexts, and simplifies context management during profiling. For
14 programs from SPEC CINT2000 and CINT2006 benchmark
suites, CAMP increases speculative parallelism opportunities by
12.6% on average and by up to 63.0% compared to the baseline
context-oblivious, loop-aware memory profiler.

I. INTRODUCTION

To aggressively optimize programs, modern compilers [1]–
[8] employ memory profilers that trace dynamic memory
dependences among instructions. Once the memory profilers
identify rarely occurring dependences, the compilers can ig-
nore these dependences and exploit speculative parallelism.
For example, even if independence among iterations cannot be
proven statically, some compilers optimistically exploit loop-
level parallelism when no inter-iteration dependence mani-
fests during profiling [4], [9]–[14]. Therefore, precise, high-
coverage profiling techniques are crucial to exploit speculative
parallelism most effectively.

Dynamic data dependence patterns can vary widely depend-
ing on the program context, such as function call site stack
and loop nest level. For example, in nested loops, there may
exist an inter-iteration dependence between two instructions
in an inner loop, while not in an outer loop. If a memory
profiler records dependences without context information, the
inter-iteration dependence will be associated with both loops,
so neither of them can be parallelized although the outer loop
can actually be parallelized. Therefore, context-aware profiling
is highly desirable to fully exploit parallelism opportunities.

However, tracing all the memory dependences with their
contexts easily become impractical due to its huge overheads
in terms of CPU cycles and memory space. Profiling memory
dependences greatly increases instruction counts to identify
and record dependences between instructions that touch the
same memory address. Context awareness exacerbates this
problem as dependences between the same pair of instructions
are counted separately if their contexts are different. As a

result, most of existing memory profilers [15]–[19] trace
memory dependences either without contexts or with only
partial context information. A few memory profilers log full
context information [20], [21], but the profilers compromise its
precision by using compacted context information or profiling
dependences in a context granularity. Table I summarizes and
compares those existing memory profilers.

This paper proposes a new compiler-runtime cooperative
Context-Aware Memory Profiling (CAMP) framework that
traces memory dependences in a byte level granularity with
full context information. The CAMP compiler statically gen-
erates a context tree that represents all the possible dynamic
contexts, encodes every context in a single context ID and its
static offset, and provides the CAMP runtime with the offset
as a hint. The CAMP runtime restores the dynamic context ID
with one arithmetic operation between the current context ID
and the given static offset, and records memory access history
with the context ID. This context encoding simplifies the data
structure and algorithm of CAMP, and minimizes its profiling
time and memory overheads.

This work implements CAMP on top of the LLVM compiler
framework [22]. For 14 programs from SPEC CINT2000 and
CINT2006 benchmark suites, CAMP exposes average 12.6%
and up to 63.0% more speculative parallelism opportunities
than a context-oblivious, loop-aware memory profiler (LAMP).
Here, CAMP finds that 87.6% of memory dependences in the
LAMP results are false positive, with only 47.2% and 28.0%
of additional profiling time and memory usage.

In summary, the primary contributions of this paper are:

• A compiler-runtime cooperative context-aware memory
profiling system with full contexts

• A static context tree that represents all the possible
dynamic contexts such as call site stack and loop nest

• An in-depth evaluation of CAMP using 14 benchmarks
from SPEC CINT2000 and CINT2006 benchmark suites

II. MOTIVATION

Memory profiling results about dynamic dependences en-
able modern compilers [1]–[8] to support aggressive optimiza-
tion that cannot be achieved by static analyses only. For exam-
ple, automatic speculative parallelizing compilers [4], [9]–[14],
[23] collect dynamic dependences in loops, and speculatively
parallelize the loops ignoring rarely occurring dependences
that static analysis cannot remove. Moreover, memory depen-
dence profiling helps parallelizing compilers produce robust
codes by augmenting fragile static analyses [23].



TABLE I
COMPARISON OF MEMORY PROFILING SYSTEMS

System Context-Awareness Full Coverage of Whole Profiling
Loop-Awareness Call Site-Awareness Dependences Program Coverage Granularity

H. Yu et al. [19] X × X × Variable
A. Ketterlin et al. [16] X × X X Variable
R. Vanka et al. [18] X × × X Byte
M. Kim et al. [17] X × X X Byte
T. Chen et al. [20] X Compacted Call Path × X Byte
Y. Sato et al. [21] X X × X Context
CAMP [This paper] X X X X Byte

1 int getValue(Node n) {
2 return n.value; // LD1
3 }
4

5 void setValue(Node n, int v) {
6 if(isValid(v)) // CS7
7 n.value = v; // ST1
8 }
9

10 int work(Node n) {
11 int v1 = getValue(n); // CS4
12 int v2 = update(v1); // CS5
13 setValue(n, v2); // CS6
14 return v2;
15 }
16

17 void main() {
18 for(int t = 0; t < T; t++) { // L1
19 for(int i = 0; i < N; i++) { // L2
20 int s = getValue(sum[t]); // CS1
21 int v = work(nodes[i]); // CS2
22 s = s + v; // ADD
23 setValue(sum[t], s); // CS3
24 }
25 }
26 }

Fig. 1. Example program

The dynamic dependences manifest depending on their
contexts such as call site stacks and loop nest levels. Figure 1
shows a simple example program that iterates two arrays in
a nested loop. LD1 in getValue and ST1 in setValue
load and store values of the two linked lists such as
sum and nodes. Since sum[t] is loop invariant for loop
L2, LD1 of CS1 (LD1@CS1) and ST1 of CS3 (ST1@CS3)
repeatedly access the same value in L2, yielding an inter-
iteration dependence from ST1@CS3 to LD1@CS1. However,
since nodes[i] is changing for L2, LD1@CS4@CS2s and
ST1@CS6@CS2s of different iterations do not access the
same value nor generate any inter-iteration dependence from
ST1@CS6@CS2 to LD1@CS4@CS2 for L2.

Since most existing memory profilers [15]–[19] are aware
of only loop nest levels, the loop-aware memory profilers can
limit the applicability of speculative parallelization. Since the
loop-aware memory profilers are oblivious of call site stacks,
their profiling results do not include any call site information
like Figure 2(a). Therefore, with the loop-aware profiling
results, a compiler cannot differentiate instructions from dif-
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(a) Loop-aware (context-oblivious) profiling results
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(b) Speculative PDG with loop-aware profiling results

Fig. 2. A loop-aware profiling result and a simplified speculative program
dependence graph of the example program in Figure 1.

ferent call sites such as LD1@CS1 and LD1@CS4@CS2, and
generates a less precise speculative program dependence graph
(PDG) like Figure 2(b) that includes many false positive
memory dependences like an inter-iteration dependence from
ST1@CS3 to LD1@CS4@CS2. Since the less precise specula-
tive PDG forms only one strongly connected component, the
compiler cannot parallelize the nested loops in the example.

To more aggressively optimize the program, the compiler
needs profiling information with full contexts such as not only
loop nest levels but also call site stacks. As Figure 3(a) shows,
a context-aware memory profiler records memory dependences
with their contexts, and allows a compiler to generate different
dependences for the same instructions with different contexts.
As a result, the compiler generates a precise context-aware
speculative PDG with two strongly connected components like
Figure 3(b), and parallelizes the nested loops like Figure 4.

The increased parallelism opportunities from the context-
aware profiling lead to the additional performance speedups
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Fig. 3. A context-aware profiling result and a simplified speculative program
dependence graphs of the example program in Figure 1.

1 void main() {
2 for(int t = 0; t < T; t++) { // L1
3 parallel_for(int i = 0; i < N; i++) { // L2
4 int v[t][i] = work(nodes[i]); // CS2
5 }
6 }
7

8 parallel_for(int t = 0; t < T; t++) { // L1’
9 for(int i = 0; i < N; i++) { // L2’

10 int s = getValue(sum[t]); // CS1
11 s = s + v[t][i]; // ADD
12 setValue(sum[t], s); // CS3
13 }
14 }
15 }

Fig. 4. Parallelized program for L1 and L2 in Figure 1

of speculative parallel program. Figure 5 shows the perfor-
mance impact of the context-aware profiling for speculatively
parallelized programs in SPEC CINT2000 and CINT2006
benchmark suites [24]. The programs are manually parallelized
with a distributed multi-threaded transactional memory [25]
on a 128-core cluster according to Spec-DSWP paralleliza-
tion algorithm [26]. While speculative parallelization with
loop-aware profiling results achieves a geomean speedup of
8.1×, speculative parallelization with context-aware profiling
results increases parallelism opportunities for 164.gzip,
197.parser, and 256.bzip2, and achieves a geomean
speedup of 26.8×.

Although context-aware memory profiling enables more ag-
gressive optimization and additional performance speedups, it
severely increases profiling time and memory usage. Whenever
a program executes a load or store instruction on a memory lo-
cation, a memory profiler generates dependences between the
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Fig. 5. Program speedups from speculative parallelization with loop-aware
and context-aware profiling results

instruction and all the previous instructions that accessed the
same memory location. While loop-aware memory profilers
record only nested loops and their iteration numbers for each
memory instruction, the context-aware memory profiler should
additionally record call site stacks. Moreover, the context-
aware memory profiler should handle the same instruction
with different call site stacks as different instruction instances,
requiring additional profiling operations and memory spaces.

Due to the high profiling overhead, most of the existing
memory profilers [15]–[19] do not collect full contexts of
memory dependences. Although T. Chen et al. [20] and Y.
Sato et al. [21] propose context-aware memory profilers that
collect call site stacks and loop nests, there are false positive
dependences in their results because of coarse granularity [21]
and abstracted transitive dependence recording [20]. Unlike the
existing memory profilers, the CAMP framework reduces the
profiling overhead with the compiler-assisted context manage-
ment, and supports byte-level context-aware memory profiling
without significant performance and memory overheads. Ta-
ble I summarizes and compares the existing memory profilers.

III. COMPILER-ASSISTED CONTEXT MANAGEMENT

While Section II points out the necessity of context-aware
memory profiling, managing contexts of a program requires
huge profiling time and memory overheads. To simplify con-
text management of CAMP , the CAMP compiler statically
analyzes all the possible contexts of a program with a context
tree (Section III-A), encodes the contexts into a single integer
(Section III-A), and automatically inserts context management
instructions (Section III-B).

A. Static Context Tree and Encoding

To efficiently manage contexts and their changes, the CAMP
compiler statically analyzes all the possible contexts and
encodes each context into a single integer context ID and its
offset.

First, the compiler generates a static context tree that
represents all the possible contexts of a program. The compiler
creates the static context tree by recursively inserting a child
node for every loop nest and function call site. Figure 6 shows
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Fig. 6. Context tree for the example code in Figure 1

a context tree for the example code in Figure 1. The compiler
recursively inserts L1 and L2 for each loop of the main node.
Then, the compiler inserts three different children such as CS1,
CS2 and CS3 for each call site of the L2 node, and recursively
inserts three children such as CS4, CS5 and CS6 for CS2.
Here, though call sites CS1 and CS4 call the same function
getValue, the compiler inserts different context nodes for
them. As a result, the context tree can differentiate the same
memory instructions across all the different dynamic contexts
like LD1 of CS1 and LD1 of CS4. Here, unlike the existing
context trees such as Loop Call Context Tree (LCCT) [21],
[27] and Call Context Tree (CCT) [28]–[30] that profilers
dynamically generate at profiling time, the CAMP compiler
statically generates the context tree to alleviate context man-
agement runtime overheads of the memory profiler.

At the context encoding step, the CAMP compiler encodes
each context node in the context tree into a single context
ID. Since a loop invocation and a call site instruction can
be multiple context nodes in the context tree with different
context IDs, the compiler needs to assign different context
IDs for the same loop and call site. Addressing the problem,
the compiler encodes the contexts in a form of a unique path
sum where each loop invocation and call site have the same
static offset, and assigns the context IDs and their static offsets
with pre-order tree traversal. Figure 6 shows context IDs and
their static offsets for the context tree. Though isValid is
invoked in multiple contexts with different IDs such as 8 and
10, its static offset from its parent contexts is one value, +1.
The CAMP runtime dynamically calculates the context IDs by
adding the static offset to the current context ID.

While the CAMP compiler creates a context tree for
most cases, there are two special cases that require special
manipulation; recursive function call and indirect function
call. To prevent from generating a context tree infinitely, the
CAMP compiler marks recursive functions before generating
the context tree, and inserts only the first recursive function
call site as a leaf loop context node. Here, the compiler
considers the recursive function call site node as a loop node,

1 bool is_even(unsigned int n) {
2 if (n==0) return true;
3 else return is_odd(n-1); // CS1
4 }
5

6 bool is_odd(unsigned int n) {
7 if (n==0) return false;
8 else return is_even(n-1); // CS2
9 }

10

11 int inc(int n) { return n+1; }
12

13 int dec(int n) { return n-1; }
14

15 void main() {
16 int (*fPtr)(int);
17 if(is_even(n)) // CS3
18 fPtr = &inc;
19 else
20 fPtr = &dec;
21 n = fPtr(n); // CS4
22 }

(a) Code example with recursive and indirect function calls
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Offset: +0main
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Offset: +1R_CS3 CtxID:  2
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CS4
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CtxID:  3
Offset: +3

CS4
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(b) Context tree

Fig. 7. Context tree for recursive and indirect function call

so the CAMP profiler can find its recursion depth by counting
iteration numbers. For indirect function calls, the compiler
analyzes all the possible targets among referenced functions
and inserts the targets as children nodes. Figure 7(a) shows
an example code with recursive function calls and indirect
function calls. Figure 7(b) illustrates that the compiler adds
call site CS3 as a leaf node due to recursive function calls
between is_even and is_odd, and inserts all the possible
indirect call candidates such as inc and dec for call site
CS4.

B. Context Management Code Generation

During the program execution, contexts such as call site
stacks and loop nests are continuously changing. To reduce
context management overheads, the CAMP compiler statically
finds the context changing points such as entries and exits
of the functions, loop invocations and loop iterations, and
inserts instructions to notify the CAMP runtime of the context
changes. Followings are the context changing notifiers, and
Figure 8 shows how the CAMP compiler inserts the notifiers
to the example in Figure 1.
• change context(offset) notifies the change of a call site

stack to the CAMP profiler with offset. The profiler
calculates the new context ID by adding the offset to the
current context ID.

• begin/end loop(offset) notifies the begin and the end of a
loop to the profiler with offset. If a loop begins, the
profiler pushes an iteration counter to the iteration counter
stack that has iteration counts of loop nests. If a loop



1 int getValue(Node *n) {
2 profiling_load(&(n->value), LD1);
3 return n->value; // LD1
4 }
5

6 void setValue(Node *n, int v) {
7 change_context(+1);
8 bool t = isValid(v); // CS7
9 change_context(-1);

10 if(t) {
11 profiling_store(&(n->value), ST1);
12 n->value = v; // ST1
13 }
14 }
15

16 int work(Node *n) {
17 change_context(+1);
18 int v1 = getValue(n); // CS4
19 change_context(-1);
20 change_context(+2);
21 int v2 = update(v1); // CS5
22 change_context(-2);
23 change_context(+3);
24 setValue(n, v2); // CS6
25 change_context(-3);
26 return v2;
27 }
28

29 void main() {
30 begin_loop(+1);
31 for(int t = 0; t < T; t++) { // L1
32 begin_loop(+1);
33 for(int i = 0; i < N; i++) { // L2
34 change_context(+1);
35 int s = getValue(sum[t]); // CS1
36 change_context(-1);
37 change_context(+2);
38 int v = work(nodes[i]); // CS2
39 change_context(-2);
40 s = s + v; // ADD
41 change_context(+7);
42 setValue(sum[t], s); // CS3
43 change_context(-7);
44 next_iteration();
45 }
46 end_loop(-1);
47 next_iteration();
48 }
49 end_loop(-1);
50 }

Fig. 8. Transformed program by the CAMP compiler for the program in
Figure 1. Bold lines are added by the CAMP compiler.

context ends, the profiler pops the iteration counter from
the iteration counter stack.

• next iteration() notifies the iteration change to the CAMP
profiler. The profiler increases the iteration counter at the
top. Since only the iteration counter at top of the stack
(i.e., the inner most loop) can iterate, no argument is
necessary.

•profiling load/store(address, instruction ID) notifies the
memory load and store to the CAMP profiler. The profiler
updates memory access history and generates depen-
dences for the memory address and the instruction.

With the context changing notifiers, the CAMP runtime
reflects context changes and updates context IDs during the

program execution. Since the most recently called function
returns first, and the most recently entered loop (inner-most
loop) exits first, programs change their contexts following the
LIFO rule. As a result CAMP manages the dynamic context
ID by adding or subtracting the context offset into and from
the current context ID according to the context changes. For
example, when a program enters (exits) a function, the context
manager adds (subtract) the context offset into (from) the
current context ID. To manage dependences in the iterated
contexts like nested loops, CAMP has the iteration counter
stack that keeps how many times each loop nest iterates. When
a program enters (exits) a loop nest, the context manager
pushes (pops) an iteration counter into (from) the current
iteration counter stack. For every loop iteration, CAMP also
changes the iteration information in the iteration counter.

IV. CONTEXT-AWARE MEMORY PROFILING RUNTIME

Figure 9 illustrates the overall structure of the CAMP
runtime. The CAMP runtime mainly consists of the three
components: current context, dependence table and history
table. This section describes the overall algorithm of context-
aware memory profiling and each component of the runtime
in details.

A. Algorithm of Context-Aware Memory Profiling

A dynamic instruction instance has its context that rep-
resents function call site stacks and iteration information
of nested loops when the instruction is executed. When
CAMP generates a dependence, CAMP needs to keep the
instruction context into a dependence context that represents
the context where the dependence is valid. For example,
an inter-iteration RAW dependence from ST1@CS3(Ctx9)
to LD1@CS1(Ctx3) in Figure 3(b) is valid at Loop L2,
but is not valid at Loop L1. On the other hand, an inter-
iteration RAW dependence from ST1@CS6@CS2(Ctx7) to
LD1@CS4@CS2(Ctx5) is valid at Loop L1, but is not valid
at Loop L2. Therefore, when adding a dependence, CAMP
should record its valid contexts such as Ctx3 and Loop L2.

Algorithm 1 describes how the CAMP runtime generates
dependences with valid contexts. First, the CAMP runtime up-
dates the dependence table (Lines 1-15). When an instruction
accesses a memory location, the runtime receives the memory
address (addr) and instruction ID (dstID), and has the cur-
rent context ID (dstCtx) and iteration counts of nested loops
(dstIterStack). The runtime searches previous memory
instructions (srcID, srcCtx and srcIterStack) that
access the same memory address from its history table (Line
1). Then, the runtime inspects the existence of the same de-
pendence in the dependence table to avoid creating redundant
dependences (Line 2). If there exists the same dependence with
the same context in the dependence table, the runtime updates
the existing dependence. If there is no same dependence, the
runtime newly generates a dependence with the instruction IDs
and their context IDs. The CAMP runtime calculates itera-
tive relation of the dependence by comparing each iteration
count in the source and destination iteration stacks (Lines



Current Context

Context ID            |  Ctx3

Address Load Store

sum[0].value

Iter. Counter Stack  |  2 (L2)  /  1 (L1)

+

sum[0].value | LD1

Memory Event

Address     Instr.ID

(1) Attach Context

sum[0].value | LD1 | Ctx3: 2/1

ST1 | Ctx9: 1/1

History Table

Dependence Table

LD1 | Ctx3: 2/1

(3) Update History Table
(2) Construct Dependence

Dst. ID Dependences

LD1

ST1 WAR: LD1@Ctx3→ST1@Ctx9 (I/I)

WAR: LD1@Ctx5→ST1@Ctx7 (I/I)

RAW: ST1@Ctx9→LD1@Ctx3 (X/I)

Fig. 9. Structure of the CAMP runtime and its operation example on the program in Figure 1. In the memory event with the context, the numbers after the
context ID (Ctx3) are iteration counts of nested loops. In the dependence table element, the right-most values indicate loop iteration relation (I and X mean
’INTRA’ and ’INTER’, respectively). Updated elements by the operations in the figure are shaded in grey.

Algorithm 1: Context-aware Dependence Generation
Data: addr: accessed address
Data: dstID: accessed instruction ID
Data: dstCtx: current context ID
Data: dstIterStack: current iteration stack
/* Update Dependence Table */

1 foreach (srcID, srcCtx, srcIterStack) ∈ getHistory(addr) do
2 let dep = getDependence(srcID, srcCtx, dstID, dstCtx);
3 if dep == NULL then
4 dep = createDep(srcID, srcCtx, dstID, dstCtx);
5 end
6 let depIter = getDependenceIter(dep);
7 foreach level = 0 to

minStackLevel(srcIterStack,dstIterStack) do
8 if srcIterStack[level] == dstIterStack[level] then
9 depIter[level] |= INTRA;

10 else
11 depIter[level] |= INTER;
12 break;
13 end
14 end
15 end

/* Update History Table */
16 if dstID == STORE then
17 replaceElement(addr, dstID, dstCtx, dstIterStack);
18 clearLoadHistory(addr);
19 else
20 addElement(addr, dstID, dstCtx, dstIterStack);
21 end

6-14). If the iteration counts are the same, the dependence
is an intra-iteration dependence. If the counts are different,
the dependence is an inter-iteration dependence. Since the
iterative relation is valid only in the same loop invocation,
the runtime stops the comparison if the iteration counts of the
two instructions are different. Here, the CAMP runtime keeps
all the previous iteration relations, so one dependence can have
both inter- and intra-iteration relations.

After updating the dependence table, the CAMP runtime
updates the history table with the new instruction. (Lines 16-
21). If the current instruction is a load, the runtime simply adds
the current instruction and its context in the load history table.
However, if the current instruction is a store, the runtime does
not only replace the element in the store history table with the

current instruction and its context, but also clears elements in
the load history table because WAR dependence is the relation
between the current store and all the previous loads after the
last store instruction.

B. Memory Event with Context

In addition to context changing notifiers, the CAMP com-
piler finds all the memory related instructions such as loads,
stores, memory allocation, memory deallocation and memory
sets, and inserts the instructions to notify the CAMP runtime
of execution of the memory related instructions. To efficiently
manage the dependence table, the compiler statically and
sequentially assigns numbers to all the load and store instruc-
tions. Since the compiler knows the total number of load and
store instructions, the runtime can allocate an array for the
dependence table and use the ID as an index.

Figure 9(1) shows how the CAMP runtime creates a
memory event context from the memory event and the cur-
rent context for the example code in Figure 8 and the
context tree in Figure 6. When Instruction LD1 in
getValue called by CS1 accesses value when t is 0
and i is 1, profiling_load(&(n->value), LD1);
notifies the memory event with a memory instruction (LD1)
and its memory address (sum[0].value). The runtime
merges the instruction with context ID (Ctx3) and iteration
counters (2/1), and generates a memory event context as
sum[0].value|LD1|Ctx3:2/1. The generated memory
event context will be used in the history table and dependence
generation.

C. Dependence Table

While executing programs, the CAMP runtime directly
generates RAW, WAR and WAW dependences and records the
dependences in the dependence table. Since the CAMP com-
piler lets the CAMP runtime know the total number of load
and store instructions, the runtime allocates the dependence
table as an array indexed by destination ID. Since different de-
pendences can share the same destination instruction, multiple
dependences can be stored in each element in the dependence
table, so the runtime uses linked lists for each destination.



TABLE II
BENCHMARK DETAILS. K AND M IN THE NUMBERS OF DYNAMIC INSTANCES MEAN THOUSANDS AND MILLIONS

Benchmark
# of Static Instances # of Dynamic Instances # of P’ll Loops

Functions Loops Call Sites Loads Stores Calls Loop
Invo. Loads Stores LAMP CAMP

052.alvinn 9 39 2 261 128 139K 278K 1338K 6715K 15 15
164.gzip 70 200 462 1191 1134 83M 35M 2368M 522M 24 29
175.vpr 155 482 2299 4250 1336 113M 50M 1616M 573M 221 226

177.mesa 1019 1340 4827 16594 11744 3913M 8M 4188M 3172M 41 41
179.art 26 132 274 674 282 14M 30M 578M 314M 55 58

197.parser 323 883 1066 3786 1375 193M 104M 1388M 400M 78 102
256.bzip2 74 253 239 1215 864 54M 36M 5709M 1157M 29 34
300.twolf 190 1082 2294 10585 3773 12M 20M 407M 125M 343 374
401.bzip2 69 301 487 2514 1662 41M 101M 1116M 267M 54 88
433.milc 235 329 2680 3498 1064 216M 31M 6717M 2025M 64 76

456.hmmer 467 1124 5168 9739 4594 47M 47M 3392M 1853M 175 177
462.libquantum 95 119 568 646 345 182M 77M 5366M 2089M 26 26

464.h264ref 948 2608 3521 44386 14342 12M 18M 913M 148M 172 173
470.lbm 19 44 87 253 104 3M 53K 52M 30M 41 44

Figure 9(2) shows how the CAMP runtime generates a
RAW dependence and stores the dependence in the depen-
dence table from the example code in Figure 8. Given the
memory event context (sum[0].value|LD1|Ctx3:2/1),
the runtime looks up the history table for the same address,
and finds a store context (ST1|Ctx9:1/1). With the two
memory event contexts, the runtime generates a context-aware
dependence according to Algorithm 1. Since the iteration
counts are different at L2, the profiler marks an inter-iteration
dependence (marked as X) for L2. Since the iteration counts
are the same at L1, the profiler marks an intra-iteration
dependence (marked as I) for L1.

D. History Table

The CAMP runtime has load and store history tables that
keep previously accessed load and store instructions for each
memory location. Whenever a memory instruction accesses
a memory location, the runtime looks up the access history
from the history tables, generates dependences between the
current instruction and all the previous instructions in the
history tables, and updates the history tables with the current
instruction. Since the CAMP runtime executes these operations
for every memory accesses, designing efficient history tables
and management algorithm is crucial for profiling perfor-
mance. To efficiently manage the history tables, the runtime
allocates each entry of history table at shadow memory which
memory address is a result of a few bit operations on the
accessed memory address. For example, if the memory address
of sum[0].value is 0x00ACCE55, the runtime allocates
its corresponding history element at 0x8ACCE550, so two bit
operations such as one OR and one SHIFT are enough for the
runtime to access the history element.

Figure 9(3) shows how the CAMP runtime updates the
history table on the memory event. After updating the depen-
dence table, the runtime updates the history table with the new
memory event. If the current memory event is a memory load
like LD1|Ctx3:2/1, the runtime simply adds the instruction

context in the load history table. Thus, there can exist more
than one load instruction context for the same memory address
in the load history table. However, if the current memory
event is a memory store, the runtime replaces the element
in the store history table to the instruction context, so there
exists at most one instruction context for each memory address
in the store history table. Moreover, a store memory event
clears elements in the load history table. This clearance allows
the runtime not to generate false positive WAR dependences
between the current store instruction and a load instruction
before the previous store instruction.

V. EVALUATION

We implemented the CAMP framework on top of the LLVM
compiler infrastructure [22]. The framework is evaluated with
14 general-purposed programs in the SPEC CINT2000 and
CINT2006 benchmark suites [24]. All the evaluations were
done natively on an Intelr CoreTM i7-4770 machine that has
4 cores running at 3.40GHz and 16 GB of RAM. The programs
were compiled with the -O3 optimization flag.

Table II lists the evaluated programs along with information
such as brief description and statistics on static and dynamic
profiled contexts and memory instructions. Details about each
program can be found in [24]. The numbers of loops and
call sites in the programs vary from 41 (052.alvinn) to
6,292 (456.hmmer), and the numbers of dynamic memory
instructions also vary from 8.0 millions (052.alvinn) to
8.7 billions (433.milc).

A. Impact on Speculative Parallelism

To evaluate how effective CAMP is to increase parallelism
opportunities, this work compares the numbers of speculatively
parallelizable loops by CAMP and a context-oblivious, loop-
aware memory profiler (LAMP). Table II shows the numbers
of speculatively parallelizable loops by CAMP and LAMP,
and Figure 10 illustrates their increase ratios. Compared to
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Fig. 10. Increased ratio of parallelizable loops compared to context-oblivious,
loop-aware memory profiling results
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Fig. 11. Ratio of false positive dependences that CAMP finds from context-
oblivious, loop-aware memory profiling results

LAMP, CAMP increases the number of speculatively paral-
lelizable loops by 12.6% on average and by up to 63.0%
(401.bzip2). CAMP cannot increase parallelism opportuni-
ties for 052.alvinn, 177.mesa and 462.libquantum
because the programs have regular memory access patterns for
LAMP enough to find parallelizable loops.

Modern compilers [1]–[8] parallelizes a program relying
on program dependence graphs (PDGs), and CAMP allows
the compilers to distinguish memory accesses at different call
sites and loop nests to generate precise speculative PDGs.
To deeply analyze how CAMP increases the speculative
parallelism opportunities, this work evaluates ratios of false
positive dependences that CAMP finds from context-oblivious,
loop-aware memory profiling results. Here, the false positive
dependences are the dependences that do not manifest but a
loop-aware memory profiler marks as manifest.

Figure 11 shows that CAMP finds that 87.6% of loop-
aware memory profiling results for 14 programs are false pos-
itive. Since the programs manipulate memory values through
getter and setter functions across all the program points,
the compilers conservatively insert dependences for all the
combinations between getters and setters, increasing false pos-
itive dependences. Unlike the context-oblivious, loop-aware
memory profilers, since CAMP can collect memory access
history with call site contexts, the compilers can find getter
and setter functions with consecutive memory accesses on
the same memory space, so reduce the number of combina-
tions, yielding precise speculative PDGs. For example, only

Benchmark

  0.8x

  1x

  1.2x

  1.4x

  1.6x

  1.8x

  2x

0
5
2

1
6
4

1
7
5

1
7
7

1
7
9

1
9
7

2
5
6

3
0
0

4
0
1

4
3
3

4
5
6

4
6
2

4
6
4

4
7
0

A
v
g

N
o
rm

al
iz

ed
 P

ro
fi

li
n
g
 T

im
e

  0.6x

(a) Profiling time

Benchmark

  0.8x

  1x

  1.2x

  1.4x

  1.6x

  1.8x

  2x

  2.2x

0
5
2

1
6
4

1
7
5

1
7
7

1
7
9

1
9
7

2
5
6

3
0
0

4
0
1

4
3
3

4
5
6

4
6
2

4
6
4

4
7
0

A
v
g

N
o
rm

al
iz

ed
 M

em
o
ry

 U
sa

g
e

  0.6x

(b) Memory usage

Benchmark

  1x

  1.5x

  2x

  2.5x

  3x

  3.5x

  4x

  4.5x

0
5
2

1
6
4

1
7
5

1
7
7

1
7
9

1
9
7

2
5
6

3
0
0

4
0
1

4
3
3

4
5
6

4
6
2

4
6
4

4
7
0

A
v
g

N
o
rm

al
iz

ed
 N

u
m

b
er

 o
f 

D
ep

en
d
en

ce
s

  0.5x

(c) Number of profiled dependences

Fig. 12. Profiling time, memory overheads and numbers of profiled depen-
dences normalized to a context-oblivious, loop-aware memory profiler.

for the variable outcnt in 164.gzip, the context-aware
memory profiler finds 1,344,238 false positive dependences
while there exist 499 real memory dependences. Considering
that imprecise PDGs limit optimization opportunities of mod-
ern compilers, the context-awareness allows the compilers to
generate precise speculative PDGs and increase optimization
performance.

Though CAMP cannot distinguish call sites and loop
nests in the recursive calls, CAMP creates effective con-
text trees and generates precise profiling results for pro-
grams with recursive function calls such as 177.mesa,
300.twolf, 456.hmmer and 462.libquantum. For ex-
ample, CAMP still increases parallelism opportunities by 9.0%
for 300.twolf marking 99.9% of dependences in the LAMP
results as false positive.



B. Time and Memory Overheads of CAMP

Figure 12 shows normalized profiling time, memory over-
heads and numbers of profiled dependences of CAMP.
Bases are those of the context-oblivious, loop-aware profiling
(LAMP). Compared to LAMP, CAMP increases the profiling
time and memory usage by 47.2% and 28.0% respectively.
Most of the increased overheads come from generating ad-
ditional dependences between the same instructions with dif-
ferent contexts that LAMP cannot distinguish, while context
management overheads are negligible. Here, CAMP efficiently
manages memory access history using the shadow memory-
based history tables with two bit operations, so CAMP mini-
mizes the increased profiling time and memory overheads less
than 89.2% while CAMP generates 1.98× more dependences
than LAMP.

CAMP generates a large number of additional dependences
for 164.gzip and 462.libquantum because the pro-
grams frequently use wrapper functions such as buffer util-
ity functions and quantum_ library functions in different
locations. Since the buffer utility functions and quantum_
library functions update global variables, and the programs
update global variables through the functions, the same mem-
ory access instruction can have a large number of different
contexts, increasing the number of context-aware dependences.
Moreover, the graphs in Figure 12 show that there is almost
no correlation between the profiling overheads and the addi-
tional dependence generations, proving CAMP efficiently adds
additional dependence to the dependence table.

VI. RELATED WORK

Context-Aware Memory Profilers: Like CAMP, context-
aware memory profilers [20], [21] generate memory depen-
dences with their contexts such as function call stacks and
loop nests. However, none of them fully generates the memory
dependences between all the instructions in a program.

T. Chen et al. [20] made full-transitive data dependence
profiler using a unified load/store history table. Since the
history table only records the most recent memory instruction,
the profiler only generate dependences between the current
memory instruction and the most recent memory instruction
on the same memory, and the compiler reconstructs full
memory dependences from the profiling results with transitive
relationship. However, since an instruction can touch multiple
memory addresses, the reconstruction can generate false posi-
tive results. Moreover, while the profiler uses the expensive
hash function to access the elements in the table. CAMP
accesses the elements in the history tables in a few bitwise
operations that require much less performance overhead.

Y. Sato et al. [21] generated dependences between code
regions such as loops and functions instead of instructions.
Since there is no information about dependences between
instructions in the profiling results, the profiling results limit
speculative compiler optimization. Moreover, the profiler only
generate RAW dependences, so reordering instructions without
renaming is limited.

Loop-Aware Memory Profilers: Loop-aware memory pro-
filers [15]–[19] trace memory dependences only with loop
contexts. Although the profilers find inter-iteration and intra
iteration dependences like CAMP, they cannot distinguish
dependences from different function call stacks.

J. R. Larus [15] proposed automatic parallelization system
using a loop-aware memory profiler. The system checks inter-
iteration dependences but does not check intra-iteration depen-
dences. Due to its inefficient memory access history manage-
ment, the profiler suffers from severe memory overhead and
time overhead.

M. Kim et al. [17] proposed SD3 profiler that is a parallel
memory profiler. SD3 reduces profiling time overhead with
the parallel profiling, and also reduces memory usage overhead
with data compression using frequent loop-stride characteristic
of computational program. Since each memory dependence
generation in CAMP is independent each other if they access
different memory address, CAMP also can be parallelized
like SD3, and additional profiling overhead reduction can be
achieved.

H. Yu et al. [19] proposed an object-based dependence
profiler. The profiler attaches tags to variables that have
access history on the variables. This work profiles a target
loop instead of the whole program, so users should execute
the profiler multiple times to optimize multiple regions in a
program.

R. Vanka et al. [18] proposed a set-based dependence
profiler using software signatures. The profiler statically finds
relevant dependences that are required for optimization, and
profiles the instructions. Although the profiler has low time
overhead, the profiling results can be incorrect because the
profiler profiles only pre-selected instruction sets.

A. Ketterlin et al. [16] optimized profiling overhead using
two main techniques: coalescing consecutive accesses and
parameterizing loop nests. The profiler treats consecutive data
structures like arrays as a single entity. In other words, the
profiler supports variable profiling granularity for consecutive
data structure. Parameterizing loop nests reduces profiling
overheads exploiting static control loops where all the memory
accesses are determined only by parameters of the loops.

Context Management in Profilers: Context management
of CAMP is highly inspired by previous context-aware perfor-
mance profilers [28]–[30] and calling context encoding [31],
[32]. G. Ammons et al. [28] first introduced a call tree in
which each node reflects a call site. Adaptive calling context
tree profilers [29], [30] support sampling-based calling con-
text management to reduce performance overhead. Sumner et
al. [31] and Zeng et al. [32] proposed calling context encoding
that statically analyzes the whole program and assigns a
single integer number for each context. Unlike the previous
profilers [28]–[30] and calling context encoding [31], [32],
CAMP constructs a context tree for every function call site
and loop invocation, and encodes the call sites and loop nests.
Since the context of CAMP reflects not only call sites but also
loop nests, CAMP additionally has an iteration stack to store
iteration counts of each loop in a loop nest.



VII. CONCLUSION

This paper proposes a new precise compiler-runtime cooper-
ative context-aware memory profiling (CAMP) framework that
traces memory dependences with their full context information
such as call site stacks and loop nest levels. For 14 programs
from SPEC CINT2000 and CINT2006 benchmark suites,
context-awareness increases speculative parallelism opportuni-
ties by 12.6% on average by finding that 87.6% of loop-aware
memory profiling results are false positive. With compiler-
assisted context management, CAMP suffers from only 47.2%
and 28.0% of additional profiling time and memory usage
while collecting 1.98× more dependences than loop-aware
memory profiling.
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