
...

HETEROGENEOUS DISTRIBUTED SHARED
MEMORY FOR LIGHTWEIGHT INTERNET

OF THINGS DEVICES
...

IOT-HDSM IS A COMPILER-RUNTIME COOPERATIVE HETEROGENEOUS DISTRIBUTED SHARED

MEMORY (HDSM) FRAMEWORK IN WHICH THE COMPILER UNIFIES HETEROGENEOUS

MEMORY LAYOUTS OF DIFFERENT IOT DEVICES AND THE RUNTIME SYSTEM PROVIDES A

SHARED MEMORY VIEW OF THE DEVICES. THIS ARTICLE DESCRIBES AN IMPLEMENTATION

OF THREE IOT SERVICES WITH IOT-HDSM AND SHOWS THAT IOT-HDSM SIMPLIFIES

SHARED DATA MANAGEMENT WITHOUT HARMING QUALITY OF SERVICE.

......Despite the promising applicabil-
ity of the Internet of Things (IoT), it is chal-
lenging for programmers to build an IoT
application because of its heterogeneous and
distributed execution environments. In an
IoT application, diverse IoT devices collabo-
ratively collect and share data to provide
enriched services. For example, a fitness-
tracking application in Figure 1 consists of a
scale, a smartphone, and a server. It measures
different tracking features such as weights,
body mass index (BMI), step counts, and
walking distance and suggests personalized
fitness and diet plans. To integrate the diverse
IoT devices into one service, programmers
should deeply understand the service applica-
tion, analyze shared data among the devices,
and explicitly insert communication codes
for the shared data. Moreover, since underly-
ing architectures of the IoT devices are heter-
ogeneous, programmers should also insert
translation codes to integrate heterogeneous
memory layouts.

To reduce the burden on IoT programmers,
recent proposals such as network embedded
systems C (nesC),1 Node-RED (http://
nodered.org), OpenRemote (www.openre-
mote.org), Smart Home (http://eclipse.org/
smarthome), and the Thing System (http://the-
thingsystem.com) provide communication
APIs and graphical tools that simplify commu-
nication management (see also the “Related
Work in Integrating Heterogeneous Devices”
sidebar). However, the APIs and graphical tools
cannot fully liberate programmers from com-
munication management, because pro-
grammers still must specify explicitly how to
communicate shared variables among IoT devi-
ces. Node-RED provides a shared memory
space for global variables to programmers, but
its programming model is limited to the uni-
directional dataflow approach.

Addressing the challenges in IoT pro-
gramming, this article revisits heterogeneous
distributed shared memory (HDSM) for IoT
applications and proposes a compiler-

Bongjun Kim

Seonyeong Heo

Gyeongmin Lee

Soyeon Park

Hanjun Kim

Jong Kim

Pohang University of Science

and Technology

...

16 Published by the IEEE Computer Society 0272-1732/16/$33.00�c 2016 IEEE

runtime cooperative lightweight HDSM
framework called IoT-HDSM. The compiler
inserts translation codes for heterogeneous
memory structures, address sizes, and endian-
ness of different IoT devices, and the runtime
system provides a shared memory view across
the devices. For lightweight IoT devices that
cannot execute the runtime, the compiler
additionally inserts explicit communication
codes for shared data.

To reduce memory consistency overheads
of IoT-HDSM, this work also proposes a
new concurrency annotation called a memory
branch. In an IoT application, some shared
data are correlated and should be updated
together at the same time. For example, the
fitness-tracking application in Figure 1
should read a step count and its walking dis-

tance together at the same time to correctly
calculate calories burned. The proposed
memory branch provides a memory snapshot
for an IoT device at the beginning of the
branch and merges all the updated values
into the master memory at the end of the
branch. If two devices update the same varia-
bles in a branch with different values at the
same time, IoT-HDSM reflects the values in
the last branch into the master memory.
Although the memory branch does not guar-
antee mutually exclusive accesses on the
shared variables, unlike locks, the branch lets
each IoT device concurrently access the
shared variables on a memory snapshot with-
out suffering from blocking.

This article implements the IoT-HDSM
framework on top of LLVM C/Cþþ

..

Related Work in Integrating Heterogeneous Devices
Node-RED (http://nodered.org) and its extensions, such as Distributed

Node-RED,1 and glue.things (www.gluethings.com), are visual IoT pro-

gramming tools that provide a holistic view of a service and facilitate

communication among devices. With the built-in library, programmers

specify dataflows by creating nodes and wiring them for communica-

tion. Moreover, Node-RED lets all nodes share global variables

through the global context. However, Node-RED’s programming model

is limited to the dataflow approach. On the other hand, IoT-HDSM

does not compel any logical program structure, which makes it rela-

tively more flexible on data sharing.

Heterogeneous distributed shared memory (HDSM) is an extended

DSM system for heterogeneous system environments. To overcome

the heterogeneity of machine architectures and programming lan-

guages, HDSM applies data conversion when data is transferred

between hosts at runtime. Songnian Zhou and colleagues show that

HDSM can maintain the functional transparency of homogeneous

DSM.2 Despite its extensibility, HDSM is unsuitable for an IoT envi-

ronment due to its runtime overhead, which is relatively high for light-

weight devices. Unlike HDSM, IoT-HDSM unifies heterogeneous

memory layouts at compile time and reduces the translation

overheads.

Reflex is a compiler and runtime framework to ease programming

for heterogeneous hardware architecture in a smartphone.3 Its core is

its own software DSM design to leverage the architectural asymmetry

and minimize performance overhead. Reflex allows data exchange

between heterogeneous processors through procedure call or shared

memory on the Reflex DSM. This approach to memory sharing is simi-

lar to IoT-HDSM, but Reflex focuses only on interprocessor communi-

cation in a device, whereas IoT-HDSM targets communication

between heterogeneous devices.

PiMiCo proposes a new compiler-assisted programming model

that reduces data communication costs and preserves privacy in

mobile-cloud systems.4,5 Because IoT applications manage different

private data and IoT devices are lightweight, efficient algorithms for

preserving privacy are crucial for IoT platforms. PiMiCo complements

IoT-HDSM to support additional features, such as privacy protection.

References
1. N.K. Giang et al., “Developing IoT Applications in the Fog: A

Distributed Dataflow Approach,” Proc. 5th Int’l Conf. Internet

of Things, 2015; doi:10.1109/IOT.2015.7356560.

2. S. Zhou et al., “Heterogeneous Distributed Shared Memo-

ry,” IEEE Trans. Parallel and Distributed Systems, vol. 3, no.

5, 1991, pp. 540–554.

3. F.X. Lin et al., “Reflex: Using Low-Power Processors in

Smartphones Without Knowing Them,” Proc. 17th Int’l Conf.

Architectural Support for Programming Languages and Oper-

ating Systems, 2012, pp. 13–24.

4. K. Ravichandran, A. Gavrilovska, and S. Pande, “PiMiCo: Pri-

vacy Preservation via Migration in Collaborative Mobile

Clouds,” Proc. 48th Hawaii Int’l Conf. System Sciences,

2015, pp. 5341–5351.

5. K. Zhang and S. Pande, “Efficient Application Migration

under Compiler Guidance,” Proc. ACM SIGPLAN/SIGBED

Conf. Languages, Compilers, and Tools for Embedded Sys-

tems, 2005, pp. 10–20.

...

NOVEMBER/DECEMBER 2016 17

compiler infrastructure and uses three IoT
services—fitness tracking, calling a taxi, and
heart attack detection—with 10 events to
evaluate IoT-HDSM using real IoT devices.
The evaluation results show that the IoT-
HDSM framework liberates programmers
from communication management without
affecting the quality of service (QoS) of IoT
services.

IOT-HDSM Programming Model
In this section, we use a simple code example
to show how the shared memory view can
simplify IoT application development, and
we explain the necessity and the operation
model of the proposed memory branch
annotation.

Shared Memory View of IoT-HDSM
Without a distributed shared memory sys-
tem, developing an IoT application requires
huge amounts of programmer effort due to
explicit communication management for
shared data. Because multiple devices collab-
oratively execute a service function in an IoT
application, each device could use data that
other devices generate. To implement the
IoT application, programmers should know
how the data is generated and used among
the devices and should explicitly insert com-
munication codes between the devices to
share the data. For example, to develop a fit-
ness-tracking application, the programmers
should know that a scale and a smartphone
collect weight, BMI, step count, and walking
distance data, and that a server needs the col-
lected data to make a diet plan. From this

knowledge, the programmers design a com-
munication model (see Figure 1) and insert
communication codes such as send and
recv in Figure 2a among the IoT devices. If
generated data are used in multiple devices,
programmers need to insert the communica-
tion codes multiple times. For example,
scale invokes the send function multiple
times to deliver weight and bmi to
smartPhone and server in Figure 2a.
Although recent proposals have simplified
communication management with commu-
nication APIs and graphical tools, IoT pro-
grammers still must explicitly manage the
communication.

IoT-HDSM provides a shared memory
view for distributed IoT devices and liberates
IoT programmers from the explicit commu-
nication management of shared data. IoT-
HDSM makes global and heap allocated var-
iables automatically shared across IoT devices
while keeping stack variables at local devices.
Therefore, by allocating shared variables at
global or heap memory and local variables at
stack memory, programmers can easily
manipulate which variable will be shared in
the program, and can develop the application
without worrying about communication
codes. Figure 2b shows how much IoT-
HDSM simplifies the fitness-tracking pro-
gram. Programmers can make weight and
bmi shared among scale, smartPhone,
and server by declaring user as a global
variable and storing the value at heap without
any send and recv function call. Here, if
an IoT device needs to access a variable that
is defined by another device, the pro-
grammers define and use the variable with
the extern keyword, such as line 2 of the
scale program.

Memory Branch
As IoT-HDSM lets multiple devices concur-
rently access a shared variable, concurrency
control becomes crucial for the correct execu-
tion. Unlike the explicit message-passing pro-
gramming model, in which programmers
can control when to send locally updated val-
ues to other devices, IoT-HDSM lets other
devices access a shared value in the middle of
updates, and causes a correctness problem.
For example, in the message-passing pro-
gram, scale transfers updated weight and

Smartphone
(ARM, powerful)

Weight/BMI

Server
(x86, powerful)

Steps/distance

Diet plan Diet plan

Smart scale
(ARM, lightweight)

Weight/BMI

Figure 1. Fitness-tracking application. A server collects personal information

such as weights, body mass index (BMI), step counts, and walking distance

from a scale and a smartphone, and suggests personalized fitness and diet

plans to a user.

..

THE INTERNET OF THINGS

..

18 IEEE MICRO

bmi to server at the same time (see the
gray boxes in Figure 3a), so server always
accesses weight and bmi in the same ver-
sion and calculates a correct diet plan. How-
ever, in the IoT-HDSM program without

any concurrency control, server can access
weight and bmi in different versions (the
gray and white boxes in Figure 3a), so
server may generate an incorrect diet plan
(the slashed boxes in Figure 3b).

1 * *** Data Types *** *\

2 typedef struct {

3 AccountInfo *account;

4 float weight; float bmi;

5 int steps; float distance;

6 Plan *dietPlan;

7 } User;

1 * *** Smart Scale *** *\

2

3

4 void scaling() {

5

6 float weight = measureWeight();

7 float bmi = measureBMI();

8

9 send(server, weight, bmi);

10 send(smartPhone, weight, bmi);

11 }

12

13 void recvDataFromServer() {

14 recv(server, &user->dietPlan);

15 }

1 * *** Server *** *\

2 User *user;

3

4 void analyze() {

5

6 user->dietPlan = makeDietPlan(user->weight,

7 user->bmi, user->steps,

8 user->distance);

9

10 send(smartPhone, user->dietPlan);

11 send(scale, user->dietPlan);

12 }

13

14 void recvDataFromScale() {

15 recv(scale, &user->weight, &user->bmi);

16 }

17

18 void recvDataFromSmartphone() {

19 recv(smartPhone, &user->steps, &user->distance);

20 }

1 * *** Data Types *** *\

2 typedef struct {

3 AccountInfo *account;

4 float weight; float bmi;

5 int steps; float distance;

6 Plan *dietPlan;

7 } User;

1 * *** Smart Scale *** *\

2 extern User *user;

3

4 void scaling() {

5 @branch {

6 user->weight = measureWeight();

7 user->bmi = measureBMI();

8 }

9 send(server, weight, bmi);

10 send(smartPhone, weight, bmi);

11 }

12

13 void recvDataFromServer() f

14 recv(server, &user ->dietPlan);

15 }

1 * *** Server *** *\

2 User *user;

3

4 void analyze() {

5 @branch {

6 user->dietPlan = makeDietPlan(user->weight,

7 user->bmi, user->steps,

8 user->distance);

9 }

10 send(smartPhone, user ->dietPlan);

11 send(scale, user ->dietPlan);

12 }

13

14 v oid recvDataFromScale() f

15 recv(scale, &user ->weight, &user ->bmi);

16 }

17

18 void recvDataFromSmartphone() f

19 recv(smartPhone, &user ->steps, &user ->distance);

20 }

(b)(a)

Figure 2. Code example: simplified fitness tracking (parts of the smart scale and server codes only). (a) Message-passing

program. (b) Program on IoT-HDSM. IoT-HDSM liberates programmers from explicit communication management by

providing a shared memory view.

...

NOVEMBER/DECEMBER 2016 19

Although locks and atomic regions can
solve the concurrency problem by atomically
updating a group of shared variables, they
could cause QoS problems. Because many
IoT devices are lightweight, supporting only
a single thread, a lock could block all the
operations, including sensing data in the
devices, and the devices could fail to provide
a service or miss some important sensing
data. For example, if server has a lock on

the user variable, scale cannot measure
the user’s weight, and smartPhone cannot
update steps until server releases the
lock. Transactional memory can allow multi-
ple devices to concurrently access shared
data, but because transactional memory
requires huge memory spaces for validation
and rollback, it is not suitable for lightweight
IoT devices.

To support lightweight update of a group
of shared data, this article introduces a new
annotation, called a branch. As with reposi-
tory branches in version control systems such
as Subversion and Git, IoT-HDSM takes a
memory snapshot when an IoT device enters
a branch region. In the branch region, the
device executes the program only on the
snapshot without any coherence operation.
When the branch region ends, IoT-HDSM
atomically merges updated values to globally
shared memory. IoT-HDSM keeps a master
node to maintain the up-to-date globally
shared memory and branch versions. Figure
3c illustrates how the branch region works
for the fitness-tracking example. When
scale enters a branch region, scale
requests a branch snapshot to the master and
updates weight and bmi. Because the
updates are in the branch region, server
cannot see the updated values, and it reads
weight and bmi in the same version (white
boxes). When scale exits the branch
region, IoT-HDSM merges the updated
weight and bmi to the master. After the
merge, server can see the updated
weight and bmi (gray boxes).

The branch annotation is valid only for
updating correlated shared variables without
serializability. Although many IoT applica-
tions are required to update correlated shared
variables together at the same time, the appli-
cations do not care about the serializability of
the updates. For example, while the branch
annotation updates a set of variables together
in the annotated region and prevents the
applications from generating an incorrect
result—such as the slashed boxes in Figure
3b—the annotation does not abort a result
from conflicted branches, such as the black
boxes in Figure 3c. Although the weight and
BMI are already updated as the gray boxes in
the master node, the master accepts the diet
plan (the black box) that is based on the old

Smart scale Master Server

beginBrch

ST weight

ST BMI

endBrch

beginBrch

LD weight

LD BMI

ST plan

endBrch

beginBrch

LD weight

LD BMI

ST plan

makeBrch

merge

makeBrch

merge

makeBrch

Smart scale Server

ST weight

ST BMI

Send

Legend (user): acnt wght BMI plan

LD weight

LD BMI

ST plan

Recv

LD weight

LD BMI

ST plan

Smart scale Server

ST weight

ST BMI

LD weight

LD BMI

ST plan

LD weight

LD BMI

ST plan

(a) (b)

(c)

//

/

/

Figure 3. Timing graphs of communicating shared data. (a) Message

passing; (b) IoT-HDSM without branch; (c) IoT-HDSM with branch. Without

the memory branch annotation, the server could read a partly updated set of

data, such as gray weight and white BMI variables. The branch annotation

allows the smartphone and the server to operate on a snapshot of a shared

memory.

..

THE INTERNET OF THINGS

..

20 IEEE MICRO

values. The branch annotation can be cor-
rectly used here because reflecting which set
of data is used is not important for generating
the correct diet plan if a user measures his
weights and BMIs multiple times (with mul-
tiple scales). If two devices concurrently
update the same shared variable and its serial-
izability is crucial, programmers should use a
lock or atomic region instead of the branch.

IOT-HDSM Framework
Figure 4 illustrates the overall structure of the
IoT-HDSM framework for providing hetero-
geneous distributed shared memory to IoT
devices. First, the front-end compiler parses
annotations about the branch regions and
computing power of IoT devices. Second,
the compiler unifies heterogeneous memory
layouts of various IoT devices. Because the
architectures of the IoT devices in an applica-
tion are heterogeneous, their memory lay-
outs, such as address sizes and structure
alignments, are also heterogeneous. The
compiler statically unifies the memory layout
and minimizes the translation overheads at
runtime. Third, the compiler reallocates
global and heap variables into shared mem-
ory spaces. Here, the compiler inserts explicit
communication codes for lightweight devices
that cannot support the IoT-HDSM run-
time. Finally, the IoT-HDSM runtime sup-
ports memory coherence operations across
distributed IoT devices.

Memory Unification
Although distributed IoT devices have the
same shared memory space through IoT-
HDSM, the devices cannot correctly share
the same value because of heterogeneous
memory layouts. For example, in the fitness-
tracking application in Figure 2, a server and
a scale allocate the same object user with
different memory layouts, because the server
is a 64-bit machine and requires 8 bytes for
its pointer variables, whereas the scale is a 32-
bit device and requires 4 bytes for pointers.
As a result, the server and the scale can use
different memory addresses for the same vari-
able, requiring expensive address translation
overheads.

To reduce the translation overheads at
runtime, IoT-HDSM unifies the heterogene-

ous memory layouts of IoT devices at com-
pile time. The IoT-HDSM compiler realigns
the heterogeneous memory structures as a
unified structure. If there is a pointer with
different sizes, such as a 32-bit pointer and a
64-bit pointer in a structure, the compiler
extends the 32-bit pointer type to the 64-bit
pointer type. Although ARM and x86 can
have the same endianness, the compiler
inserts endianness translation codes for each
memory access if an IoT device uses a differ-
ent endianness. The memory layout unifica-
tion is similar to previous work2 except for
the memory pointer unification; the

Front end

Memory layout unification

Memory layout
realignment

struct Foo {
a,b

}

struct Foo_cvrt {
a, padding, b

}

Address size
conversion

x = *ptr32 ptr64 = zExt (ptr32);
x = *ptr64

Endianness
translation

x = *bigE
*bigE = x

x = bigToLtl (*bigE)
*bigE = ltlToBig (x)

server.c smartphone.c smartScale.c

Branch
manager

@branch{
instr …

}

beginBranch ();
 instr … // @branch
endBranch ();

(lightweight)
Comp. power

annotation

Programs

Lightweight
device

management

x = *p ;

*p = x ;

*p = dsm_read (p, sz) ;
x = *p ;
*p = x ;
dsm_write (p, x, sz) ;

Shared memory provider

Runtime

smartphone.exe
smartScale.exeRuntime

server.exeIoT-HDSM
runtime

Heap variable
reallocation

p = malloc (s) ;
free (p) ;

p = dsm_malloc (s) ;
dsm_free (p) ;

Global variable
mapping

int gv ; int gv ;
& gv = dsm_malloc(s) ;

Figure 4. Overall structure of IoT-HDSM framework with the programs in

Figure 2. The IoT-HDSM compiler modifies data structures and inserts

translation instructions to integrate heterogeneous memory layouts. The

compiler inserts explicit communication codes for shared data accesses to

support lightweight devices that cannot execute the IoT-HDSM runtime.

...

NOVEMBER/DECEMBER 2016 21

IoT-HDSM framework newly supports
memory versioning through the memory
branch annotation. Moreover, to effectively
support lightweight IoT devices with 8/16-
bit microcontrollers, the compiler transforms
64-bit pointer variables to 8- or 16-bit dere-
ferenced variables if possible and inserts
explicit communication codes for the derefer-
enced variables.

Shared Memory Management
The IoT-HDSM framework provides shared
memory spaces for global and heap variables.
For heap variables, the IoT-HDSM compiler
replaces existing allocation and deallocation
call sites with IoT-HDSM allocation and
deallocation function calls. For global varia-
bles, the IoT-HDSM compiler reallocates the
global variable area to the DSM space and
initializes the addresses of the global variables
as the DSM addresses for all the IoT devices.
Moreover, to minimize the coherence over-
heads, IoT-HDSM adopts the lazy release
consistency model3,4 as a underlying coher-
ence protocol.

Some IoT devices are not powerful
enough to execute the IoT-HDSM runtime.
For example, because lightweight IoT devices
cannot support multithreading, IoT-HDSM
cannot execute its runtime daemon as a back-
ground process. Although an IoT device can
support multithreading, it can be more effi-
cient to explicitly communicate shared data
than to rely on the shared memory runtime,
especially if the device accesses only a few
data, as with the smart scale in Figure 1. For
lightweight devices, the IoT-HDSM com-

piler automatically inserts explicit communi-
cation codes for every shared memory access,
so the devices can exploit the shared memory
view without the runtime.

Memory Branch Management
Because the IoT-HDSM compiler unifies
heterogeneous memory layouts, the IoT-
HDSM runtime provides only coherence
protocols for shared objects across distributed
IoT devices, such as existing software
DSM.3–6 Additionally, to support the mem-
ory branch annotation, the runtime keeps
up-to-date memory states at the master node.
The most powerful computing node
becomes the master node, as with the cloud
server in Figure 1.

For every memory branch annotation, the
front-end IoT-HDSM compiler inserts
beginBranch and endBranch function
calls at the beginning and end of the branch
region. When a device invokes begin-
Branch, the device sends a branch entrance
signal to the master node, and the master
takes a snapshot of the current memory state
by creating a new process that has a cloned
memory space but separate memory. When-
ever the device requests memory values, the
master node sends the value from the process
memory. The device keeps a write set for
updated values in the memory branch region
and sends the write set with a branch merge
signal at the end of the memory branch. The
master directly and atomically updates write
sets at the master memory and kills the
branch process. If there is no load instruction
in a branch region, as in the scale function in

Table 1. Benchmark specification.

Benchmark Device Specification

Fitness Tracker Server Desktop server (Intel Core i7-6700)

Smartphone Samsung Galaxy S5 (Qualcomm Snapdragon 801)

Smart scale ODROID-XU4 (Samsung Exynos 5422)

Taxi App Server Desktop server

Taxi ODROID-XU4

Customer Samsung Galaxy S5

Heart Attack Smartphone ODROID-XU4

911 server Desktop server

Hospital Desktop server

..

THE INTERNET OF THINGS

..

22 IEEE MICRO

Figure 2, the compiler marks the branch
region as a write-only branch and does not
generate a process because the memory snap-
shot is not necessary.

Evaluation
To evaluate IoT-HDSM, we implemented
three Cþþ IoT applications—a fitness
tracker, a taxi service, and heart-attack detec-
tion—with 10 events in message passing and
shared memory programming models (with
and without branch annotation). As Table 1
shows, each service uses various IoT devices,
such as an embedded system board
(ODROID-XU4) with Samsung Exynos
5422, a state-of-the-art Samsung Galaxy S5
smartphone, and a desktop server with Intel
Core i7-6700. This work assumes that the
embedded board is lightweight, whereas the
smartphone and desktop are powerful.

Without any correctness or QoS problem,
the IoT-HDSM framework successfully uni-
fies heterogeneous memory layouts across IoT
devices and liberates programmers from
shared data management. Figure 5 shows each
request’s response time in IoT services.
Although IoT-HDSM suffers from a geomean
slowdown of 2.98 times compared to message
passing due to round-trip communication for
memory coherence, the average and maxi-
mum response time overheads are 24 and 100
ms, respectively, so IoT-HDSM does not
harm the IoT applications’ QoS. Figure 5 also
shows that the memory branch annotation
reduces the coherence overheads and achieves
the geomean speedup of 1.33 times.

Figure 6 shows how IoT-HDSM simpli-
fies IoT programming with lines of code
comparison. Compared to message-passing
programming models, the shared-memory
programming model of IoT-HDSM requires
35.36 percent fewer lines of code. The differ-
ence comes from the automatic communica-
tion management and memory layout
translation among heterogeneous IoT devi-
ces. By taking responsibility for complex
communication management and memory
layout translation, the IoT-HDSM frame-
work makes IoT programming easy.

A lthough the IoT-HDSM framework
efficiently simplifies communication

management by integrating heterogeneous
and distributed memory spaces of IoT devi-
ces, the seamless memory integration
increases the risk of information leakage. Pri-
vacy protection is crucial for IoT services
because many IoT services collect personal
information such as health and medical
information. However, IoT sensors and
actuators are too lightweight to support exist-
ing heavy privacy protection algorithms, and
many IoTservice programmers are not secur-
ity experts. Therefore, a lightweight and easy
information protection mechanism is neces-
sary for IoT programmers and platforms,

0
20
40
60
80

100
120
140

In
it

S
ca

lin
g

U
p

d
at

e

R
ep

or
t

In
it

Lo
C

C
al

l

In
it

A
la

rm

S
en

d
 r

at
e

Fitness tracking Taxi application Heart attack

R
es

p
on

se
tim

e
(m

s)

Message passing IoT-HDSM w/o branch IoT-HDSM

Figure 5. Response time for each event in IoT applications. Compared to the

message passing model, the IoT-HDSM framework suffers from 24 ms and

100 ms average and maximum latency overheads. The memory branch

annotation yields the geomean speedup of 1.33 times beside the non-

branch version.

0

500

1,000

1,500

Fitness tracking Taxi application Heart attack

Li
ne

s
of

 c
od

e

Message passing IoT-HDSM

Figure 6. Lines of code (LoC) of IoT applications. IoT-HDSM simplifies the

IoT programming by requiring 35.56 percent fewer lines of code than the

message passing model.

...

NOVEMBER/DECEMBER 2016 23

including IoT-HDSM. This work leaves the
security challenge as a future work. MICR O

Acknowledgments
We thank the anonymous reviewers and edi-
tors for their insightful comments and sug-
gestions. We also thank CoreLab and HPC
Lab for their support and feedback during
this work. This work is supported by Sam-
sung Research Funding Center of Samsung
Electronics under project no. SRFC-
TB1403-04.

..
References
1. D. Gay et al., “The nesC Language: A Holistic

Approach to Networked Embedded Sys-

tems,” Proc. ACM SIGPLAN Conf. Program-

ming Language Design and Implementation,

2003; doi:10.1145/781131.781133.

2. G. Lee et al., “Architecture-Aware Automatic

Computation Offload for Native

Applications,” Proc. 48th IEEE/ACM Int’l

Symp. Microarchitecture, 2015, pp. 521–532.

3. P. Keleher, A.L. Cox, and W. Zwaenepoel,

“Lazy Release Consistency for Software

Distributed Shared Memory,” Proc. 19th

Ann. Int’l Symp. Computer Architecture,

1992, pp. 13–21.

4. Y. Zhou, L. Iftode, and K. Li, “Performance

Evaluation of Two Home-Based Lazy

Release Consistency Protocols for Shared

Virtual Memory Systems,” Proc. 2nd USE-

NIX Symp. Operating Systems Design and

Implementation, 1996, pp. 75–88.

5. J.B. Carter, “Design of the Munin Distrib-

uted Shared Memory System,” J. Parallel

and Distributed Computing, Sept. 1995, pp.

219–227.

6. D.J. Scales and K. Gharachorloo, “Towards

Transparent and Efficient Software Distrib-

uted Shared Memory,” Proc. 16th ACM

Symp. Operating Systems Principles, 1997,

pp. 157–169.

Bongjun Kim is a PhD student in the
Department of Computer Science and
Engineering at Pohang University of Science
and Technology (POSTECH). His research
focuses on compiler optimization for the
Internet of Things and security. Kim

received a BS in computer science and engi-
neering from POSTECH. Contact him at
bong90@postech.ac.kr.

Seonyeong Heo is a PhD student in the
Department of Computer Science and
Engineering at Pohang University of Science
and Technology (POSTECH). Her research
interests include compiler optimization for
dynamic software updating and the Internet
of Things. Heo received a BS in computer
science and engineering from POSTECH.
Contact her at heosy@postech.ac.kr.

Gyeongmin Lee is a PhD student in the
Department of Creative IT Engineering at
Pohang University of Science and Technol-
ogy (POSTECH). His research focuses on
the programmability of IoT applications.
Lee received a BS in computer science and
engineering from POSTECH. Contact him
at paina@postech.ac.kr.

Soyeon Park is an undergraduate student in
the Department of Computer Science and
Engineering at Pohang University of Science
and Technology (POSTECH). Her research
interests include computer systems and secur-
ity. Contact her at thdusdl1219@postech.ac.kr.

Hanjun Kim is an assistant professor in the
Departments of Creative IT Engineering
and Computer Science and Engineering at
Pohang University of Science and Technol-
ogy (POSTECH). His research interests
include computer architecture and compiler
optimization for distributed and emerging
systems. Kim has a PhD in computer sci-
ence from Princeton University. Contact
him at hanjun@postech.ac.kr.

Jong Kim is a professor in the Department
of Computer Science and Engineering at
Pohang University of Science and Technol-
ogy (POSTECH). He is also a director of
POSTECH Information Research Labora-
tories. His research interests include system
and network security, mobile embedded
software, dependable computing, and paral-
lel and distributed computing. Kim received
a PhD in computer engineering from Penn-
sylvania State University. Contact him at
jkim@postech.ac.kr.

..

THE INTERNET OF THINGS

..

24 IEEE MICRO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

