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Abstract
The explosion of networked devices has driven a new computing
environment called the Internet of Things (IoT), enabling various
services such as home automation and health monitoring. Despite
the promising applicability of the IoT, developing an IoT service
is challenging for programmers, because the programmers should
integrate multiple programmable devices and heterogeneous third-
party devices. Recent works have proposed integrated program-
ming platforms, but they either require device-specific implemen-
tation for third-party devices without any device abstraction, or ab-
stract all the devices to the standard interfaces requiring unneces-
sary abstraction of programmable devices. To integrate IoT devices
with selective abstraction, this work revisits the object oriented pro-
gramming (OOP) model, and proposes a new language extension
and its compiler-runtime framework, called Esperanto. With three
annotations that map each object to its corresponding IoT device,
the Esperanto language allows programmers to integrate multiple
programmable devices into one OOP program and to abstract simi-
lar third-party devices into their common ancestor classes. Given
the annotations, the Esperanto compiler automatically partitions
the integrated program into multiple sub-programs for each pro-
grammable IoT device, and inserts communication and synchro-
nization code. Moreover, for the ancestor classes, the Esperanto
runtime dynamically identifies connected third-party devices, and
links their corresponding descendent objects. Compared to an ex-
isting approach on the integrated IoT programming, Esperanto re-
quires 33.3% fewer lines of code to implement 5 IoT services, and
reduces their response time by 44.8% on average.

CCS Concepts •Hardware→ Emerging languages and com-
pilers; •Software and its engineering→ Distributed program-
ming languages

Keywords Internet of Things, IoT, Integrated programming model,
Esperanto

1. Introduction
According to Gartner, 26 billion devices will be interconnected
through the Internet by 2020, inaugurating a new era of the Internet
of Things (IoT) [13]. In the era of the IoT, various networked de-
vices collaboratively provide a service with their specific features.
Figure 1 illustrates a baby monitor application as an IoT service
example. A custom embedded board with an IP camera monitors a
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Figure 1. An IoT service example: Baby monitor

baby. If the baby cries, the IP camera notifies parents by blinking
smartbulbs and sending a message to mobile phones. The parents
can watch the baby by connecting to the IP camera with their mo-
biles, and keep some video clips to the cloud server. Like the baby
monitor example, the IoT environment enables new promising ser-
vices by integrating various networked devices ranging from sen-
sors and actuators like IP cameras and smartbulbs to smartphones
and cloud servers.

Despite the promising applicability of the IoT, building an IoT
application is challenging for programmers due to multiple pro-
grammable devices and heterogeneous APIs of third-party devices.
To integrate multiple programmable IoT devices, programmers
should write multiple disjoint sub-programs for each device, and
explicitly manage communication among the devices. Moreover,
since different vendors adopt different APIs for their devices, pro-
grammers should add device-specific implementation for similar
third-party devices like Hue and LIFX smartbulbs. Thus, to sim-
plify IoT programming, an IoT programming platform should inte-
grate multiple programmable IoT devices while abstracting various
APIs of similar third-party devices into common APIs.

Though recent works [4, 11, 14, 15, 19, 22, 24, 30, 31, 33–35]
have proposed various IoT platforms that integrate IoT devices, but
none of them can fully solve the challenges. Protocol integration
platforms [11, 19, 35] unify communication protocols across IoT
devices, but they still require programmers to write and synchro-
nize multiple sub-programs without a holistic view of an IoT appli-
cation. Device integration platforms [4, 15, 30, 33, 36] integrates
multiple IoT devices with a holistic view of an application. How-
ever, they either require device-specific implementation for third-
party devices without abstracting heterogeneous APIs into a com-
mon API [4, 15, 30], or require unnecessary abstraction of pro-
grammable devices to the standard interfaces considering all the
devices as third-party devices [33, 36].

To integrate multiple programmable IoT devices and selectively
abstract heterogeneous APIs of third-party devices, this work re-
visits the object oriented programming (OOP) model, and pro-
poses a new language extension and its compiler-runtime frame-
work, called Esperanto. With three annotations that express the
correspondence between an object and a thing, the Esperanto lan-
guage allows programmers to write only one object oriented pro-
gram for multiple programmable IoT devices. Moreover, exploiting
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Figure 2. The overall structures of the baby monitor program (Figure 1) in different IoT frameworks. Here, the baby monitor program
executes customized sub-programs for multiple programmable devices such as the IP camera, the server and the mobile, exploiting third-
party devices such as Hue and LIFX smartbulbs. Gray boxes are programs that programmers need to write, and dashed boxes are integrated
programming views that each framework provides.

the inheritance of the OOP model, the Esperanto language supports
selective abstraction of third-party devices into a single ancestor
class. Given the annotations, the Esperanto compiler automatically
partitions the integrated object oriented program into multiple sub-
programs for each IoT device, and inserts communication and syn-
chronization code. The Esperanto runtime dynamically binds the
ancestor class to its descendant objects reflecting connected third-
party devices at run-time.

This work implements the Esperanto compiler-runtime frame-
work on top of the LLVM C++ compiler infrastructure [25]. With
a video demo [12], this work shows that the Esperanto compiler
framework correctly transforms the integrated baby monitor pro-
gram in the Esperanto language into multiple IoT sub-programs for
each device. To further evaluate the Esperanto language and the
compiler framework, this work also implements 14 events of 5 IoT
services such as baby monitor, fitness tracking, taxi application,
heart attack detection, and fire alarm application in the Esperanto
language. Compared to an existing device integration approach, the
Esperanto language and compiler framework require 33.3% fewer
lines of code with 44.8% shorter response time on average.

The contributions of this paper are:

• The syntax and semantics of the Esperanto language that al-
lows programmers to write one integrated program for multiple
programmable IoT devices and to selectively abstract heteroge-
neous APIs of third-party devices into common interfaces

• The Esperanto compiler that automatically partitions an in-
tegrated IoT program into multiple sub-programs for pro-
grammable devices

• The Esperanto runtime that dynamically identifies connected
IoT devices and links the common interfaces into their corre-
sponding third-party devices

2. Motivation
While the IoT integrates heterogeneous networked devices and
provides new services, developing an IoT program requires a
huge amount of programmers’ efforts due to the distributed pro-
grammable devices and heterogeneous APIs of third-party devices.

Distributed programmable devices: In the IoT environments,
multiple different devices cooperatively execute an IoT application.
Since the devices are distributed and heterogeneous, programmers
write multiple disjoint sub-programs for each device, and integrate
the sub-programs into one service through explicit communication
management. For example, to develop the baby monitor application

System
Integrated

Programming
Model

Programmable
Device

Integration

Device
Abstraction

Eclipse SmartHome [11] × X ×
The Thing System [35] × X X
IoTivity [19] × X X
Dist. Node-RED [4, 15, 30] X X ×
SmartThings [33] X × X
Esperanto [This paper] X X X

Table 1. Comparison of existing IoT programming approaches

in Figure 1, programmers should write different sub-programs for
an IP camera, mobile phones, bulbs and a server with explicit
communication codes for the notification and video clips.

Heterogeneous APIs of third-party devices: Since third-party
IoT devices provide a vast range of features that one manufacturer
cannot solely provide, exploiting third-party devices is inevitable to
enrich the functionality of IoT services. However, different vendors
adopt different APIs for the same type of devices, requiring device-
specific implementation for each device and making IoT program-
ming difficult. For example, though Hue and LIFX are smartbulbs
with similar features, they support different communication pro-
tocols and APIs. As a result, programmers should write different
binding codes to support Hue and LIFX as Figure 2(a) illustrates.

Recent works [4, 11, 14, 15, 19, 22, 24, 30, 31, 33–36] have
proposed various IoT platforms that integrate heterogeneous IoT
devices, but none of the platforms fully integrate programmable
and third-party IoT devices as Table 1 shows.

Protocol integration platforms: Protocol integration plat-
forms such as The Thing System [35], IoTivity [19] and Eclipse
SmartHome [11] unify communication protocols across different
IoT devices, so the heterogeneous IoT devices can communicate
with each other in the standard protocols. However, the platforms
do not integrate programming environments of each device, so pro-
grammers should develop multiple sub-programs of the devices
without a holistic view of an application and explicitly manage
communication between the devices.

Programmable device-centric integration: Programmable
device-centric integration platforms [4, 14, 15, 30] integrate pro-
gramming environments of multiple programmable IoT devices.
As Figure 2(a) shows, while the platforms allow programmers to
write an IoT application with a holistic view, they execute each sub-
program of the application directly on their corresponding devices.
However, although the platforms integrate multiple programmable
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Challenges of IoT Programming Esperanto

Device
Integration

Device registration Object creation
Identification method Memory address

Communication Method call

Device
Abstraction

Common interface Ancestor class
Device-specific
implementation Descendant class

Table 2. Features of the Esperanto language that address the chal-
lenges in Section 2

devices, the existing device-centric integration platforms do not
abstract heterogeneous APIs of third-party IoT devices, requiring
programmers to develop multiple device-specific codes for various
third-party devices like the gray boxes in Figure 2(a). Moreover, the
platforms [4, 15, 30] require virtualization of underlying devices to
seamlessly integrate heterogeneous architectures.

Device integration with abstraction (cloud-centric): Cloud-
centric IoT platforms [33, 36] integrate IoT devices with device
abstraction. With abstract interfaces instead of multiple vendor-
customized interfaces, programmers can control diverse underlying
devices like Figure 2(b). However, the existing platforms enforce
the programmers to use standard interfaces for all the devices
including custom programmable devices, making custom device
management difficult. For example, as Figure 2(b) illustrates, to
integrate programmable devices such as the IP camera, the mobile
phone and the server, programmers should map the devices to some
of the existing standard interfaces, and implement device handlers
on the cloud and device programs on each programmable device.
If a custom device includes a new feature that does not exist in
the capability list, programmers should categorize the device into
a general sensor or actuator like the mobile phone and the server
in Figure 2(b). Moreover, since the custom device is categorized
into general sensors and actuators, programmers need to write
additional codes in the cloud to find the custom device from others.

Esperanto: Figure 2(c) illustrates the Esperanto compiler
framework that this work newly proposes. The Esperanto frame-
work integrates multiple programmable devices without abstrac-
tion like programmable device-centric integration platforms while
selectively abstracting heterogeneous APIs of third-party devices
into a common API. Therefore, with the Esperanto framework,
programmers can write an IoT application without device-specific
implementation of third-party devices and unnecessary abstraction
of programmable devices.

3. Esperanto Language
The Esperanto language integrates multiple programmable IoT de-
vices while selectively abstracting third-party devices. Section 3.1
describes the design principles of the language, Section 3.2 intro-
duces syntax and semantics of the proposed Esperanto primitives,
and Section 3.3 demonstrates how the language integrates multi-
ple programmable devices and abstracts third-party devices with
an IoT application example.

3.1 Design Principle
Simple but powerful programming language: To effectively re-
duce the burden of IoT programmers, the proposed language should
be simple and easy for programmers to learn and use, and also be
powerful enough to solve the challenges in Section 2. To achieve
the goal, this work revisits the object oriented programming (OOP)
model that most programmers are familiar with. In the OOP model,
objects correspond to things in the real world, and a parent class ab-
stracts its children classes. Exploiting the correspondence between
objects and things and the inheritance feature of the OOP language,

Syntax of the Esperanto primitives
Physical Device

Declaration #pragma EspDevDecl(devID,main)

Device-Object
Mapping

#pragma EspDevice(devID,(conditions))
class className;

Third-party
Device Import #pragma EspImport(className,funcName)

Runtime variable examples in condition
TYPE Device type (e.g. Server, Mobile, Bulb, Watch, ...)
VENDOR Vendor of device
MODEL Model name of device
ARCH Processor architecture of device
OS Operating system of device

Table 3. Esperanto syntax

this work integrates multiple programmable devices and selectively
abstracts heterogeneous APIs of third-party devices to their par-
ent classes with a minimal extension of an existing OOP language,
three new annotations in total.

Integrated programming with a single machine view: An
IoT service is composed of things and communications among
things. Similarly, an OOP program is composed of objects and de-
scribes interactions between objects. Based on the correspondence
between objects and things, the Esperanto language integrates mul-
tiple sub-programs of IoT devices in an IoT service into a single
integrated OOP program. As an OOP programmer manages mul-
tiple objects in a single OOP program, an Esperanto programmer
manages multiple IoT devices with a single Esperanto program.
According to the Esperanto primitives, the Esperanto compiler par-
titions the integrated program into multiple sub-programs, and in-
serts communication codes for method calls at different objects.
Table 2 summarizes how the Esperanto language integrates multi-
ple programmable devices.

Device abstraction: The concept of inheritance and polymor-
phism gives “is-a” relationships between objects and allows poly-
morphic behaviors while providing a common interface to objects.
Exploiting this concept, the Esperanto language abstracts similar
types of devices to have a common interface and binds device-
specific implementation of the devices to the interface. For the ab-
stract interface, the Esperanto compiler dynamically links its corre-
sponding object implementation reflecting the execution environ-
ment. Table 2 summarizes how the Esperanto language abstracts
heterogeneous APIs of third-party devices.

3.2 Syntax and Semantics
This work proposes the Esperanto language by extending the exist-
ing C++ language with three annotations for the easy and powerful
integrated IoT programming with selective abstraction. Though the
Esperanto language extends the C++ language, the proposed syntax
and semantics are not tied to C++ because the proposed language
does not require any C++ specific feature. Table 3 and Figure 3
show the three annotations and the Esperanto codes for the baby
monitor example in Figure 1.

EspDevDecl declares a programmable device with its name
(devID), constructor and destructor. The constructor and the de-
structor will be invoked at the beginning and the end of the sub-
program of the device. For example, Figure 3 declares two pro-
grammable devices such as Cam (IP Camera) and Phone with
their constructors and destructors (Lines 3-4). Here, EspDevDecl
is only allowed for programmable devices because the Esperanto
compiler generates sub-program binaries for the EspDevDecl an-
notated devices.

EspDevice maps its annotated class to the declared device.
For example, the Esperanto programmer can install the IPCamera
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1 /* *** BabyMonitor.h/cpp *** */
2 // Declare all the programmable devices
3 #pragma EspDevDecl(Cam, cam_ctor, cam_dtor)
4 #pragma EspDevDecl(Phone, m_ctor, m_dtor)
5

6 // Generate an import function for 3rd-party devices
7 #pragma EspImport(SmartBulb, getBulbs)
8

9 // Map IPCamera class to device Cam
10 #pragma EspDevice(Cam)
11 class IPCamera {
12 private:
13 void onBabyCry();
14 };
15

16 // Map Mobile class to device Phone
17 #pragma EspDevice(Phone)
18 class Mobile {
19 public:
20 void alarm(string msg);
21 };
22

23 IPCamera* cam;
24 List<Mobile*> m_list;
25 SmartBulb** bulbs;
26 int num_bulbs = 0;
27

28 // Work as main function of Cam device
29 void cam_ctor(){
30 cam = new IPCamera();
31 // Bind all the SmartBulb instances
32 bulbs = getBulbs(&num_bulbs);
33 }
34

35 void IPCamera::onBabyCry(){
36 for(size_t i=0;i<m_list.size();i++){
37 // Send a message through a function call
38 m_list[i]->alarm("Baby is crying");
39 }
40 // Device abstraction for SmartBulbs
41 for(size_t i=0;i<num_bulbs;i++) bulbs[i]->blink();
42 }
43

44 // A mobile phone registers itself to a m list
45 void m_ctor(){
46 Mobile* m = new Mobile();
47 m_list.push_back(m);
48 }

Figure 3. Esperanto pseudo codes of the baby monitor application
in Figure 1

class at the device Cam with the EspDevice annotation at line
10 in Figure 3. Here, the programmer needs to insert the anno-
tation only for code that should be executed in the device. Given
the annotation, the Esperanto compiler will automatically map non-
annotated instructions to appropriate IoT devices based on perfor-
mance estimation results.

EspDevice can optionally pass device conditions as an ar-
gument to specify its target physical device. The Esperanto com-
piler framework requires hardware description of each device such
as its device type, vendor, model, architecture and operating sys-
tem. The Esperanto runtime dynamically checks the description,
and maps the object to the appropriate device. For example, Fig-
ure 4 shows that Bulb device programmers annotate their classes
with VENDOR and MODEL runtime variables (Line 2 in Hue.h and
2 and 9 in LIFX.h). According to the annotated condition, the run-
time maps Hue, LIFX, and LIFXZ classes to their corresponding
physical devices such as Hue, LIFX and LIFXZ smartbulbs.

EspImport and its import function allow IoT application pro-
grams to exploit non-programmable third-party devices like Hue
and LIFX bulbs. EspImport generates an import function that
binds all the className devices (Line 7), and the import func-
tion returns className objects of all the connected devices (Line
32). Programmers can specify a certain type of devices by pass-

1 /* *** SmartBulb.h *** */
2 #pragma EspDevice(Bulb, TYPE==BULB)
3 class SmartBulb {
4 public:
5 virtual bool connect() = 0;
6 virtual void blink() = 0;
7 };

1 /* *** Hue.h *** */
2 #pragma EspDevice(Bulb, VENDOR==PHILIPS)
3 class Hue : SmartBulb {
4 public:
5 bool connect();
6 void blink();
7 private:
8 char bridge[23];
9 };

1 /* *** LIFX.h *** */
2 #pragma EspDevice(Bulb, VENDOR==LIFX)
3 class LIFX : SmartBulb {
4 public:
5 bool connect();
6 void blink();
7 };
8

9 #pragma EspDevice(Bulb, MODEL==LIFXZ)
10 class LIFXZ : LIFX{
11 public:
12 void blink(int idx);
13 };

Figure 4. SmartBulb class and its descendant classes

ing its corresponding class type as the className argument. For
example, if a programmer uses LIFX instead of SmartBulb as
the first argument, the import function returns connected LIFX and
LIFXZ objects but does not return Hue objects.

Runtime variables are hardware and system information
of connected devices such as their device type, vendor, architecture
and operating system. With the runtime variables, programmers can
specify a target device that an object is mapped on.

3.3 Device Integration and Abstraction
Exploiting the existing features of the OOP model with the pro-
posed primitives, the Esperanto language effectively integrates
multiple programmable devices and selectively abstracts hetero-
geneous APIs of third-party devices.

Multiple programmable device integration: Considering an
object as a thing, the Esperanto programmers write an integrated
object oriented program for one IoT service. The Esperanto lan-
guage allows programmers to register a device by allocating an ob-
ject instance. Since the Esperanto compiler framework provides a
unified virtual address view across the IoT devices, each object in-
stance has a unique memory address in an IoT service. By binding
the memory address of an object instance with the IP address of
the corresponding device, the Esperanto compiler can identify IoT
devices for object instances, and transform a method call of other
objects (remote call) like line 38 in Figure 3 to the communication
between devices. For example, whenever a new mobile phone allo-
cates a Mobile object at line 46 in Figure 3, the Esperanto com-
piler framework maps the memory address of the object instance to
the IP address of the physical mobile phone. When an IP camera
accesses a mobile object instance, the Esperanto runtime translates
the memory address of the instance to the IP address of the mobile,
and sends the message to the corresponding mobile device.

Device abstraction: With the inheritance feature, the Es-
peranto language abstracts heterogeneous APIs of third-party de-
vices, supporting device agnosticism. For example, in Figure 4
the SmartBulb class defines an interface of a smartbulb device,
and the Hue and LIFX classes that inherit the SmartBulb class
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Figure 5. The overall structure of the Esperanto compiler

implement functionalities of each device. The Esperanto language
allows programmers to write their applications with the interface of
the SmartBulb class regardless of underlying devices (Line 41).
The Esperanto runtime dynamically finds and returns appropriate
objects reflecting execution environments for getBulbs, so the
program invokes blink functions of Hue and LIFX.

4. Esperanto Compiler
To support the Esperanto language, this work proposes a new
compiler-runtime cooperative framework. The Esperanto com-
piler partitions an integrated Esperanto program into multiple sub-
programs for IoT devices (Section 4.1), and inserts device abstrac-
tion management code (Section 4.2). The Esperanto runtime man-
ages communication among the IoT devices and device abstraction
reflecting connected devices at run-time. Section 5 will describe
details of the runtime system.

4.1 Device Integration Management
The Esperanto compiler transforms an integrated Esperanto pro-
gram into multiple sub-programs for IoT devices. Figure 5 shows
the overall structure of the Esperanto compiler framework. The
Esperanto compiler consists of a marker, a partitioner and a cus-
tomizer. The marker marks all the instructions in a program with
their target devices. The partitioner divides the marked instruc-
tions into multiple sub-programs, and inserts communication in-
structions. The customizer keeps a set of back-end compilers, and
customizes each sub-program for each IoT device.

Marker: The marker parses the Esperanto syntax and maps all
the instructions in a program to their target devices. The parser
recognizes the Esperanto syntax, and marks all the instructions in
a device-annotated class as their target devices. For example, the
parser marks the IPCamera class and its member functions as the
Cam device.

The mark inferrer marks all the non-annotated instructions.
Since a programmer does not annotate the instructions to a spe-
cific device, the instructions can be placed on any device. The
mark inferrer estimates performance of possible target devices, and
annotates the instructions as the optimal device. For further perfor-
mance optimization, dynamic deployment [8, 10, 16, 37] can be
applied to the non-annotated instructions.

1 /* *** Sub-program for IPCamera *** */
2 // Generate an import function for 3rd-party devices
3 //#pragma EspImport(SmartBulb, getBulbs)
4 SmartBulb** getBulbs(int &size) {
5 return getSmartBulbs(size);
6 }
7 ...
8

9 // Work as main function of Cam device
10 // void cam ctor(){
11 void main(){
12 cam = new IPCamera();
13 mapObjDev(cam, getIPaddress());
14

15 // Bind all the SmartBulb instances
16 bulbs = getBulbs(&num_bulbs);
17 }
18

19 void IPCamera::onBabyCry(){
20 for(size_t i=0;i<m_list.size();i++){
21 // Send a message through a function call
22 // m list[i]->alarm("Baby is crying");
23 send(&m list[i], ALARM, "Baby is crying");
24 }
25 // Device agnosticism for SmartBulbs
26 for(size_t i=0;i<num_bulbs;i++) bulbs[i]->blink();
27 }

1 /* *** Sub-program for Phone *** */
2 ...
3 void alarm(string msg);
4 ...
5 void communicationHandler(){
6 calledFcnID = recv();
7 switch(calledFcnID){
8 case ALARM:
9 arg = recv();

10 alarm(arg);
11 }
12 }

Figure 6. Partitioned sub-programs of the baby monitor code ex-
ample in Figure 3

If the caller and callee instructions are marked as different
devices, the remote call marker annotates the caller as a remote
function call that requires network communication (Lines 22-23 in
in Figure 6).

The object mapper inserts a call instruction of mapObjDev
where an EspDevDecl-annotated object is allocated (Line 13
in Figure 6). The mapObjDev function registers the pointer of
the newly allocated memory object and the current network IP
address into the object-device map in the runtime. Using the object-
device map, the runtime can find a correct target device from the
memory object pointer. If an object is not device-annotated, the
object mapper does not insert a call instruction of mapObjDev.

Partitioner: Given marked instructions, the partitioner au-
tomatically partitions the Esperanto program into multiple sub-
programs for each IoT device, and inserts communication instruc-
tions. Figure 6 shows how the partitioner partitions the Esperanto
program into multiple partitioned sub-programs. First, the parti-
tioner replaces all the remote function call sites with the network
communication send function calls. (Line 23 in Figure 6). The
partitioner passes the memory address of callee objects as the first
argument of the send function. Since mapObjDev registers the
object address with its IP address, the Esperanto runtime can find
the target IP address from the object address (Figure 8). Then, the
partitioner generates multiple sub-programs and erases instructions
that are not marked for each sub-program. Finally, the partitioner
unifies heterogeneous memory layouts such as struct alignment,
pointer size and endianness across different IoT devices [23].

Customizer: The customizer keeps a set of back-end compilers
that the Esperanto compiler framework supports, and customizes
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1 /* *** Bulb Library *** */
2 SmartBulb** __getSmartBulbs(size_t &size) {
3 size = getNumDev(TYPE==BULB);
4 SmartBulb** bulbs = malloc(...);
5 for(i=1:size) {
6 if(getRuntimeVar(i, VENDOR)==PHILIPS) {
7 bulbs[i] = new Hue();
8 } else if(getRuntimeVar(i, VENDOR)==LIFX) {
9 if(getRuntimeVar(i, MODEL)==LIFXZ)

10 bulbs[i] = new LIFXZ();
11 else
12 bulbs[i] = new LIFX();
13 }
14 }
15 return bulbs;
16 }
17 ...
18 LIFX** __getLIFX(size_t &size) { ... }
19 ...

Figure 7. Abstraction management code example of SmartBulb
classes in Figure 4

each sub-program for each IoT device. Given description of target
machines as a compilation input, the Esperanto compiler frame-
work picks appropriate back-end compilers from the set, and com-
piles the sub-programs with the back-end compilers. If there exists
a code that works only for a specific hardware, the customizer op-
timizes the code with the back-end compiler.

4.2 Device Abstraction Management
The Esperanto compiler inserts abstraction management code for
third-party devices and EspImport annotations, Figure 7 shows
how the Esperanto compiler transforms an abstract interface of
third-party devices such as the SmartBulb class into an import
function ( getSmartBulb) that dynamically binds its child ob-
ject reflecting connected devices at run-time. The compiler ana-
lyzes each EspDevice annotated class with the annotated condi-
tions, and writes its class hierarchy in the SW description file (Fig-
ure 8). Based on the analyzed class hierarchy, the compiler gener-
ates an import function for each EspDevice annotated class. The
import function dynamically reads HW descriptions of connected
devices, compares the descriptions with conditions of the annotated
class and its descendant classes, and allocates corresponding ob-
jects. The Esperanto compiler transforms the EspImport annota-
tion in the application program into a wrapper function of the im-
port function. As a result, programmers can use third-party devices
in a device agnostic way.

5. Esperanto Runtime
The Esperanto runtime manages all the connected IoT devices at
the user environments, and supports multiple programmable device
integration and selective abstraction. The runtime consists of three
modules such as a device manager, a communication manager, and
a memory manager.

The device manager manages all the connected IoT devices and
supports abstraction of third-party devices. When a new IoT device
is connected to the user environment, the device manager collects
HW description about the device such as IP address, device type,
vendor, architecture, and operating system (Steps 1 to 3 in Fig-
ure 8). Here, the Esperanto runtime periodically checks connected
IoT devices to find the third-party IoT devices that do not include
the Esperanto runtime. When an Esperanto program searches de-
vices with a runtime condition such as TYPE==BULB, the device
manager searches corresponding devices from the HW description.

To support device abstraction, the device manager also keeps
SW description that includes all the ancestor classes of a con-
nected device. If an Esperanto program imports one of the ancestor
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Figure 8. The overall structure of the Esperanto runtime

classes using EspImport, the runtime checks the SW descrip-
tion and returns the connected devices. Then, the Esperanto pro-
gram creates appropriate objects for the devices with their HW de-
scription. For example, the getSmartBulbs function in Fig-
ure 7 requests the Esperanto runtime to search third-party devices
that have SmartBulb as its ancestor class. The Esperanto run-
time finds descendent classes of SmartBulb from the SW de-
scription and returns their connected device lists from the HW de-
scription such as Hue, LIFX and LIFXZ. As Figure 7 illustrates,
the getSmartBulb function creates and returns corresponding
descendent objects for the devices in the lists.

The communication manager maps objects in an Esperanto pro-
gram to a physical device, and manages communication among
objects. The Esperanto compiler inserts an object-device mapping
function call (mapObjDev) for every EspDevice-annotated ob-
ject allocation. When mapObjDev is invoked, the communication
manager inserts a new element to the object-device map. Steps 4
and 5 in Figure 8 show how the Esperanto runtime maps a newly
created device object to a connected physical device.

The Esperanto compiler transforms remote function call instruc-
tions on the objects into the communication function calls (send)
passing the object memory pointer as an argument. If send is in-
voked, the device manager finds a corresponding IP address with
the memory address of the passed-in object from the object-device
map, and translates the memory address to the IP address. Then, the
communication manager sends the message to the target IP address.

The memory manager in the Esperanto runtime manages mem-
ory coherence across IoT devices at run-time. Since the memory
unifier in the Esperanto compiler unifies heterogeneous memory
layouts across heterogeneous IoT devices as one layout, the mem-
ory manager in the runtime only needs to support memory coher-
ence without worrying about memory translation. Therefore, the
existing distributed shared memory systems [5, 32] can be used for
the runtime.

6. Evaluation
This work implements the Esperanto framework on the LLVM
compiler infrastructure [25]. To evaluate the Esperanto language,
compiler and runtime, this work designs 5 IoT services in the Es-
peranto language, and deploys the services on heterogeneous IoT
devices ranging from embedded systems such as ODROID-XU4
and ODROID-C0 [17] to a Samsung Galaxy S5 mobile phone
and a desktop server. The mobile runs the Android 4.4.2 (KitKat),
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Benchmark Device Specification

Baby
Monitor

IP Camera ODROID-XU4 with USB-CAM 720P
(Samsung Exynos 5422, 2GB)

Mobile Samsung Galaxy S5
(Qualcomm Snapdragon 801, 3GB)

Server Desktop Server
(Intel Core i7-6700, 16GB)

Bulb Philips Hue and LIFX

Fitness
Tracking

Server Desktop Server
Mobile Samsung Galaxy S5

SmartScale ODROID-C0
(Amlogic ARM Cortex-A5, 1GB)

SmartBand Gear Fit and Mi Band

Taxi
App.

Server Desktop Server
Driver ODROID-XU4
Customer Samsung Galaxy S5

Heart
Attack

Gateway Desktop Server
Mobile Samsung Galaxy S5
Hospital Desktop Server
SmartBand Gear Fit and Mi Band

Fire
Alarm

Server Desktop Server
Mobile Samsung Galaxy S5
Thermometers ODROID-XU4 with a weather board
Bulb Philips Hue and LIFX

Table 4. IoT Service and device specification

the desktop server runs Ubuntu 16.04, and the embedded systems
run Ubuntu MATE 1.10.2. Here, to evaluate programmability on a
device-specific custom hardware, this work installs a camera hard-
ware module and a weather board on the embedded systems. Third-
party devices such as smartbulbs (Hue and LIFX) and smart bands
(Gear Fit and Mi Band) are used to evaluate the third-party de-
vice management in a device agnostic way. All the ODROID de-
vices are wirelessly connected with 144Mbps maximum bandwidth
(802.11n), and the mobile is connected with 844Mbps (802.11ac).
Table 4 describes devices used in each service.

6.1 The Evaluated IoT Services
To evaluate the Esperanto language and framework, this work de-
signs 5 IoT services such as baby monitor, fitness tracking, taxi ap-
plication, heart attack detection and fire alarm application, which
support 14 events in total. Table 5 briefly describes each event.

Baby Monitor monitors and records a baby’s condition with
an IP camera, mobile phones, a server and bulbs. An IP camera
periodically captures an image of the baby and sends the image
frame to the internal server via the mobile phones (Event Cam). If
the IP camera notices the change in the baby’s state, such as the
situation that the baby starts to cry, the IP camera makes connected
bulbs blink and sends an alarm message to the mobiles (Event
Alarm).

Fitness Tracking is a personal health reporting system
based on collected user data. A user registers a mobile device into
a server to use the fitness tracking service (Event Register). The
mobile gathers health information through several devices like a
smart scale and a smart band (Event Scale). Then, the mobile
updates the raw information on the server (Event Update). After
analyzing the collected data, the server offers a personal health
report on user’s request (Event Report).

Taxi Application simulates an online taxi-rider match-
ing, composed of a server, drivers and customers. In the initial-
ization phase, a driver sends a sign-in request to the server, and
receives a unique ID. (Event Register). Each driver periodically
updates its location to the server with the unique ID (Event Loc).
When a customer requests for a ride, the server searches nearby
drivers and forwards the request to the drivers. Then, the server

Benchmark Event Description

Baby
Monitor

Alarm Notifies the baby cry to bulb and mobile

Cam Send an image frame to mobiles and
upload the frame to the server

Fitness
Tracking

Register Register a mobile device into the server
Scale Send weight and body fat to mobiles
Update Update tracking and weight history
Report Generate an analysis report

Taxi
App.

Register Register a taxi driver into the server
Loc Update the location of a taxi
Call Call a nearby taxi

Heart
Attack

Register Register a hospital server into the server
Alarm Notify heart attack to a nearby hospital
SendRate Send heart rates to history

Fire
Alarm

Info Send temperatures to the server
Alarm Notify a fire alarm to mobiles

Table 5. Evaluated event description

Figure 9. A snapshot of the video demo [12]

notifies the customer about the matching result, whether one driver
accepts the request or none of the drivers is available (Event Call).

Heart Attack tracks a person’s heart rate and detects an ab-
normal heartbeat state. This program consists of a gateway, hospi-
tals, mobiles and smart bands. Each hospital registers its server and
location to the gateway (Event Register). A mobile checks heart
rates through a smart band regularly. If the heart rate goes too high
or too low, the mobile sends a notification to the gateway, and the
gateway notifies the nearest hospital in the hospital list about the
emergency (Event Alarm). The hospital gets an authority to make
a direct connection with the mobile, and the mobile sends required
information to the hospital (Event SendRate).

Fire Alarm collects temperatures of a building and detects
fire. Thermometers periodically measure temperatures in the build-
ing and send the temperatures to a server (Event Info). If the
server detects a fire from the temperatures, the server notifies regis-
tered mobile phones and smartbulbs about the fire (Event Alarm).

6.2 Programmability of Esperanto
To evaluate programmability of the Esperanto language, this work
implements all the 5 services in Section 6.1 in the Esperanto lan-
guage, and successfully compiles and executes the services. All
the Esperanto programs are written in an integrated programming
way with a single machine view. The Esperanto programs are writ-
ten in a device agnostic way, and correctly support different third-
party devices such as smartbulbs (Hue and LIFX) and smart bands
(Gear Fit and Mi Band). In the fitness tracking and the heart attack
programs, the Galaxy S5 and the smart bands have step counters
and beat sensors, and provide the step counting and the heart rates
checking features.
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Figure 11. Response time of each event in the IoT programs

With a video demo [12], this work demonstrates that the Es-
peranto compiler framework correctly transforms the integrated
baby monitor program in the Esperanto language into multiple IoT
sub-programs for each device. The demo also shows that the baby
monitor program successfully blinks a smartbulb Hue though the
program is written in a device agnostic way. Figure 9 shows a snap-
shot of the video demo.

To compare the programmability of the Esperanto language
with other IoT programming models, this work also implements
the same services in programmable device-centric and cloud-
centric integration approaches. The programmable device-centric
approach integrates multiple programmable devices into one pro-
gramming environment like Esperanto, but it does not support any
device abstraction requiring device-specific implementation for
each third-party devices. The cloud-centric integration approach
integrates IoT devices with standard abstraction, so it requires un-
necessary device handlers and device programs for programmable
devices. Here, to eliminate performance effects from the underly-
ing platforms, all the services are written in C++.

Figure 10 shows that Esperanto successfully simplifies pro-
gramming IoT services. For the 5 IoT service, the average lines
of the Esperanto programs are 23.8% and 33.3% shorter than lines
of programmable device-centric and cloud-centric programs while
the programs provide the same IoT services. The lines of code con-
sist of third-party device management, device handlers and ser-
vice algorithm. All the programs do not include any device reg-
istration, identification and explicit communication code among
devices because the three approaches support integrated IoT pro-
gramming with a holistic programming view. Since Esperanto sup-
ports device agnosticism without requiring device-customized code
for third-party devices, the Esperanto programs have fewer lines of
code than the programmable device-centric ones. Here, if the pro-
grams support more third-party devices, the programmable device-
centric programs will have more lines of code because the lines
of device-customized code is proportional to the number of third-
party devices. Moreover, the Esperanto programs do not include
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Figure 12. Communication count and amount of each event in the
IoT programs. C, E and I represent Cloud-centric, Esperanto and
Ideal programs respectively.

device handlers for programmable devices, so the Esperanto pro-
grams have also fewer lines of code than the cloud-centric ones.
As a result, Esperanto requires only service algorithm codes and
effectively reduces the burden of programmers.

6.3 Response Time Analysis
This section evaluates performance of the cloud-centric integra-
tion approach and Esperanto. This work does not evaluate the pro-
grammable device-centric programs because the programmable
device-centric programs and the Esperanto program have the same
communication topology. Instead of the programmable device-
centric programs, this work manually implements the ideal IoT
services that do not include any platform overheads with optimal
communication to analyze the maximum achievable performance
of the services.

Figure 11 shows the response time of each event in the IoT pro-
grams. The results are the average response time of ten invocations
per event. Since Esperanto allows IoT devices to directly commu-
nicate with each other without passing through the cloud server,
Esperanto shows average 44.8% shorter response time than cloud-
centric integration approach. Compared to the ideal programs, the
Esperanto programs suffer from average 12.56 milliseconds and
up to 28.14 milliseconds (Baby Monitor Alarm) latency over-
heads that are negligible enough for people not to recognize [29].

Since most of the response time consists of communication
overheads among devices, to deeply analyze the communication
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overheads, this work measures the communication counts and
amounts of each event in the cloud-centric, Esperanto and ideal
programs. Figure 12 (a) shows the Esperanto programs suffer from
additional communication counts from the DSM coherence. It is
because while the cloud-centric and ideal programs send a sig-
nal and data in one message, the Esperanto programs invoke re-
mote functions in a message passing way and transfer shared data
through the DSM system. The Esperanto DSM system minimizes
the DSM coherence costs by adopting the lazy release consistency
protocols [2, 20, 40]. In the protocol, an IoT device synchronizes
shared data at the beginning and the end of the remote function in-
vocation at caller and callee sides if there is no volatile variable nor
misprefetched shared data. Baby Monitor Cam, Taxi App.
Call, Fire Alarm Alarm and Fire Alarm Info events
suffer from a relatively large number of DSM coherence counts
because the events invoke remote functions in a nested way. For
example, in the baby monitor program, an IP camera uploads an
image to a server via a mobile phone, so the Cam event has more
DSM coherence counts than others.

Figure 12 (b) shows the amount of communication among IoT
devices. Since the Esperanto programs communicate shared data
through the DSM system, the DSM coherence takes a large por-
tion of the communication amount. Moreover, since the DSM co-
herence shares page tables and the object-device table map, reg-
istering an IoT device causes additional communication amount
like Reg. in Fitness Tracking, Taxi App. and Heart
Attack. Alarm in Baby Monitor also suffers from relatively
high communication amount because the IP camera newly allocates
a large amount of memory for an image, and synchronizes its page
table with other devices.

Here, although the Esperanto programs have more communica-
tion counts and amount than the cloud-centric programs, the Es-
peranto programs are faster than the cloud-centric programs be-
cause the latency of inter-device communication is much shorter
than the latency of cloud-device communication.

7. Related Work
Integrated Programming Support: To reduce the burden of IoT
programmers, previous works [1, 6, 9, 14, 15, 18, 22, 24, 30, 31,
33, 34, 37] have proposed integrated programming models and
platforms for distributed systems including IoT and wireless sensor
networks. Like Esperanto, the programming models and platforms
integrate programming environments of heterogeneous devices and
provide a holistic view of an application to programmers.

SmartThings [33] is a programming platform for IoT that en-
capsulates a physical device as a composition of its capabilities. A
capability is composed of commands (actions that things can do)
and attributes (states that things can be). For example, a colorCon-
trol capability has a command that sets its color, and an attribute
that represents its hue value. Therefore, the SmartThings capability
model allows an application programmer to write an IoT service
program in a device agnostic way by providing device manage-
ment in capability granularity. However, since the framework only
supports standard capabilities, it limits its applicability for custom
programmable devices. Unlike SmartThings, Esperanto allows the
programmer to directly manage programmable devices without the
standardization of the devices.

Node-RED [30] and its extensions such as distributed Node-
RED [15] and glue.things [24] provide a graphical user interface for
integrated IoT programming. With the proposed systems, program-
mers can design an IoT system by graphically combining devices
and specifying data flows. However, due to their lack of support
for third-party integration in a device agnostic way, the program-
mers should implement different binding codes to control various
third-party devices. On the other hand, this work supports device

agnosticism by exploiting the inheritance and polymorphism fea-
tures of the object oriented programming model.

Open-Remote [31] also offers graphic-based IoT programming
environment for residential and commercial building automation.
Open-Remote abstracts detailed low-level implementation by inte-
grating a variety of protocols. Since Open-Remote allows any ven-
dor or integrator to write plug-ins, the platform can easily extensi-
ble to support various third-party devices. However, its high level
of abstraction leads to relatively limited programming flexibility.

nesC [14], Eon [34] and Mace [22] are extended C/C++ lan-
guages that support a holistic design of networked embedded sys-
tems. These languages provide abstraction with high level objects
and connect components with their interfaces. Although they sim-
plify complex event handling implementation, the languages have
little consideration for device agnosticism since they do not target
IoT environments.

Programming models on computation offloading [7, 21, 37, 38]
allow programmers to integrate programs across distributed sys-
tems into one program. However, the proposed models manage
only computation tasks that are independent from underlying de-
vices. This work integrates heterogeneous IoT devices into one
computing system, providing a holistic programming view.

Protocol Integration System: IoTivity [19], the Thing Sys-
tem [35] and Eclipse SmartHome [11] are frameworks that help
to build IoT solutions. The frameworks offer integrated methods
for discovery, connection and communication of things, whether
the things use different protocols or standards. For example, IoTiv-
ity enables seamless device-to-device connectivity with high level
APIs for resource discovery, data transmission and device manage-
ment. The Thing System provides a core middleware called stew-
ard, and clients can get resources or communicate with other de-
vices through the steward. Eclipse SmartHome provides an event
bus and each device can send or receive events through the bus.

Although the systems successfully integrate heterogeneous de-
vices, programmers still need to write explicit code to make de-
vices interact each other. For example, using IoTitivty, program-
mers should make explicit API calls according to their interface
to request resources. In case of the Thing System, clients should
use WebSocket to send a specific message to the steward. Also,
with Eclipse SmartHome, each device should define a publisher
or subscriber to send or receive events. In contrast, Esperanto per-
forms code instrumentation to provide communication abstraction.
Therefore, with Esperanto, programmers only insert a function call
rather than specify the entire send-receive procedure.

Distributed Shared Memory: To provide a shared memory
view across distributed IoT devices, the Esperanto runtime relies on
a heterogeneous distributed shared memory system [39]. Inspired
by Native Offloader [26] and Reflex [28], the Esperanto compiler
integrates heterogeneous memory layouts and marks synchroniza-
tion points to reduce the coherence overheads. To reduce the com-
munication amount and counts for the DSM coherence, the Es-
peranto runtime adopts a relaxed consistency model, called lazy re-
lease consistency [2, 20, 23, 40]. While the current implementation
adopts only one consistency model for the whole Esperanto pro-
gram, the Esperanto runtime can reduce the overheads further with
multiple consistency protocols for user-annotated shared data [5].
Moreover, like Ivy [27] that is the first page-based software DSM
system, the Esperanto runtime manages shared data coherence in a
page level granularity. Since this work revisits the object oriented
programming model, shared data coherence in an object granularity
is possible like Orca [3].

8. Conclusion
This work proposes a new integrated IoT programming framework
with selective abstraction, called Esperanto. Esperanto allows pro-
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grammers to write one object oriented program for multiple pro-
grammable devices with three annotations that bind an object and
a thing, and abstract similar third-party devices into their common
ancestor classes with the inheritance feature of the OOP model.
With multiple programmable device integration and selective ab-
straction, Esperanto reduces average 33.3% of lines of code and
44.8% of response time for 5 IoT services compared with a cloud-
centric integrated programming approach.
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