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ABSTRACT
Although mobile devices have been evolved enough to sup-
port complex mobile programs, performance of the mobile
devices is lagging behind performance of servers. To bridge
the performance gap, computation offloading allows a mo-
bile device to remotely execute heavy tasks at servers. How-
ever, due to architectural differences between mobile devices
and servers, most existing computation offloading systems
rely on virtual machines, so they cannot offload native ap-
plications. Some offloading systems can offload native mo-
bile applications, but their applicability is limited to well-
analyzable simple applications. This work presents auto-
matic cross-architecture computation offloading for general-
purpose native applications with a prototype framework that
is called Native Offloader. At compile-time, Native Offloader
automatically finds heavy tasks without any annotation, and
generates offloading-enabled native binaries with memory
unification for a mobile device and a server. At run-time,
Native Offloader efficiently supports seamless migration be-
tween the mobile device and the server with a unified virtual
address space and communication optimization. Native Of-
floader automatically offloads 17 native C applications from
SPEC CPU2000 and CPU2006 benchmark suites without a
virtual machine, and achieves a geomean program speedup
of 6.42⇥ and battery saving of 82.0%.

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: Program Transformation;
D.4 [Operating Systems]: Process Management
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Native Computation Offloading, Mobile Cloud Computing

1. INTRODUCTION
Despite the advance of mobile devices, performance of

mobile devices is lagging behind performance of desktops
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Difficulty Level 7 8 9 10 11
Desktop (sec) 0.06 0.50 1.11 2.23 11.38

Smartphone (sec) 0.34 2.92 6.33 12.79 66.02
Performance Gap (⇥) 5.36 5.89 5.71 5.74 5.80

Table 1: Movement computation time of the same chess
game application on a smartphone and a desktop

and servers. For example, Table 1 presents the execution
time of the same chess game movement computation on a
Samsung Galaxy S5 smartphone and a Dell XPS 8700 desk-
top. Though the smartphone is state of the art, the smart-
phone is more than 5 times slower than the desktop across all
the different thinking depths. Thus, mobile users should suf-
fer from more than 5 times longer waiting time for each turn
or play the game with a stupider AI. Meanwhile, people want
to use more and more complex applications such as office
programs and 3D games on their mobile devices. Therefore,
improving the mobile device performance becomes crucial
to satisfy the mobile users.

Recent research has demonstrated that computation of-
floading systems can alleviate the performance overhead of
the mobile devices by borrowing the high computing power
from servers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16]. The offloading systems send heavy and machine-
independent tasks to servers, and receive their execution re-
sults from the servers. Since servers generally have more
powerful computing resources than mobile devices, the sys-
tems can increase the performance of the mobile applica-
tions. Here, while most mobile platforms adopt ARM pro-
cessors, most server platforms use x86 processors. To over-
come the architectural difference, most existing computation
offloading systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15,
16] rely on virtual machines (VMs) such as Dalvik VM and
Microsoft .NET Common Language Runtime (CLR) to vir-
tualize underlying architectures.

However, relying on VMs limits applicability of the of-
floading systems to Java or C# programs, so the systems
cannot offload native C programs. To better understand how
much codes are written and executed in native languages
in real-world mobile applications, we investigated top 20
open source Android applications [17, 18]. Table 2 shows
that around one third of the 20 applications include native
codes more than 50% and spend more than 20% of the to-
tal execution time to execute them. Moreover, Mehrara et
al. shows that Java and JavaScript programs are more than
6 times slower than the same C program due to the inter-



Application Version Description C/C++ Total Ratio
(LoC) Runtime Description Ratio

(Exec. Time)
AdAway 3.0.2 AD blocker 132,882 310,321 42.82% Read articles with ads 21.54%

Orbot 14.1.4-noPIE Tor client 675,851 969,243 69.73% Web browsing with Tor 61.98%
Firefox 40.0 Web browser 8,094,678 15,509,820 52.19% Web browsing 4 websites 88.27%

VLC Player 1.5.1.1 Media player 3,584,526 6,433,726 55.71% Play a movie w/ HW decoder
Play a movie w/o HW decoder

23.05%
92.34%

Open Camera 1.2 Camera 0 10,336 0.00% N/A 0.00%
osmAnd 2.1.1 Map/Navigation 53,695 450,573 11.92% Search nearby places 23.86%

Syncthing 0.5.0-beta5 File synchronizer 0 59,461 0.00% N/A 0.00%
AFWall+ 1.3.4.1 Network traffic controller 1,514 59,741 2.53% Web browsing 4 websites 0.30%

2048 1.95 Puzzle game 0 2,232 0.00% N/A 0.00%
K-9 Mail 4.804 Email client 0 96,588 0.00% N/A 0.00%

PDF Reader 0.4.0 PDF viewer 334,489 594,434 56.27% Read a book with zoom 28.30%
ownCloud 1.5.8 File synchronizer 0 77,141 0.00% N/A 0.00%
DAVdroid 0.6.2 Private data synchronizer 0 7,435 0.00% N/A 0.00%

Barcode Scanner 4.7.0 2D/QR code scanner 0 50,201 0.00% N/A 0.00%
SatStat 2 Sensor status monitor 0 7,480 0.00% N/A 0.00%

Cool Reader 3.1.2-72 Ebook reader 491,556 681,001 72.18% Read a book 97.73%
OS Monitor 3.4.1.0 OS monitor 5,902 74,513 7.92% Read network and process info. 4.38%

Orweb 0.6.1 Web browser 0 14,124 0.00% N/A 0.00%
PPSSPP 1.0.1.0 PSP emulator 1,304,973 1,438,322 90.73% Play a game for 1 minute 97.68%

Adblock Plus 1.1.3 AD blocker 2,102 63,779 3.30% Read articles with ads 22.83%

Table 2: Ratios of lines of C/C++ codes and their execution time in the top 20 open source Android applications. The
execution time is measured under the described runtime behaviors.

pretation overheads of their VMs [19]. Due to the perfor-
mance overhead, many developers implement computation-
intensive parts as native codes with NDK libraries. There-
fore, as Gordon et al. [5] point out, existing VM-based of-
floading systems cannot support lots of real-world computa-
tion intensive applications.

There are computation offloading systems [10, 14, 20, 21,
22] for native applications. These systems statically analyze
mobile programs and make optimal partitions for mobile de-
vices and servers. However, their applicability is limited
mostly to well-analyzable simple applications such as media
encoding and decoding programs that only have regular data
access patterns. Table 2 shows that nowadays smartphone
users use various kinds of mobile applications ranging from
media players and games to web browsers, navigation, cloud
service applications and emulators. Therefore, computation
offloading systems need to offload general-purpose applica-
tions that are characterized by irregular data access patterns
and complex control flow.

This paper is the first to demonstrate automatic computa-
tion offloading for general-purpose native applications, ad-
dressing the problems of different ISAs and distinct hetero-
geneous memory spaces across different architectures. This
work has implemented a prototype framework for automatic
computation offloading called Native Offloader, by combin-
ing an architecture-aware partitioning compiler and a seam-
less migration runtime. The Native Offloader compiler auto-
matically finds machine independent heavy tasks from a na-
tive application without any annotation, inserts memory uni-
fication codes to overcome architectural differences such as
memory layout, address size and endianness, and generates
offloading-enabled native binaries for a mobile device and
a server. The runtime provides a copy-on-demand sharing
scheme between the mobile device and the server that allows
data shared without an explicit communication instruction.
With the memory unification codes and the copy-on-demand
sharing scheme, Native Offloader provides the unified vir-

tual address (UVA) space on distinct heterogeneous mem-
ory spaces of different architectures. For 17 native C ap-
plications from SPEC CPU2000 and CPU2006 benchmark
suites, the Native Offloader framework achieves a geomean
speedup of 6.42⇥ and a geomean battery saving of 82.0%
on an ARM mobile device with a x86 desktop server. This
demonstrates that the architecture-aware memory unification
makes automatic computation offloading for general-purpose
native applications possible with low overheads.

The contributions of this paper are:

• The first automatic computation offloading for general-
purpose native applications across different architec-
tures

• Architecture-aware memory unification and optimiza-
tion schemes for efficient cross-architecture coopera-
tive execution such as between ARM and x86

• An in-depth evaluation of the Native Offloader proto-
type on ARM and x86 platforms using 17 native C ap-
plications from SPEC CPU2000 and CPU2006 bench-
mark suites

2. DESIGN OF NATIVE OFFLOADER
Native Offloader is a compiler-runtime cooperative sys-

tem that automatically offloads machine-independent heavy
tasks of a general-purpose native application from a mobile
device to a server without any annotation and virtual ma-
chine. For Native Offloader to seamlessly and efficiently of-
fload native applications across different architectures, there
exist the following challenges.

• ISA difference: Since mobile devices and servers adopt
different processors such as ARM and x86, Native Of-
floader should compile a mobile application into two
different binaries with different ISAs. To support var-
ious combinations of architectures, Native Offloader
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Figure 1: Structure of the Native Offloader framework

partitions the original application at IR level, and gen-
erates binaries for each target machine with various
back-end compilers.

• Distinct memories: Due to distinct memory spaces,
mobile devices and servers need to explicitly commu-
nicate shared objects. To efficiently share the objects
without sophisticated static analysis and time-consuming
address translation, Native Offloader provides a uni-
fied virtual address space across mobile devices and
servers.

• Different memory layouts, address sizes and endian-
nesses: Though memory spaces are shared across mo-
bile devices and servers, mobile devices and servers
may not read the same value from the same memory
address because they may have different memory lay-
outs, address sizes and endiannesses. To overcome
the architectural differences, Native Offloader unifies
memory structures and inserts translation codes for mem-
ory operations.

Figure 1 illustrates the overall structure of Native Offloader.
The Native Offloader compiler analyzes and transforms mo-
bile applications at IR level. Front-end compilers transform
various mobile applications to IR codes, the Native Offloader
compiler partitions the IR codes into offloading-enabled IR
codes for mobile devices and servers, and back-end compil-
ers of each target machine compile the offloading-enabled
IR codes to machine codes. Since IR codes are indepen-
dent from source code languages and target machines, the
IR level partitioning allows Native Offloader to easily en-
large its source language and target machine applicability.

The Native Offloader compiler automatically partitions the
original IR codes into offloading-enabled IR codes in four
steps; 1) target selection, 2) memory unification code gen-
eration, 3) partition, and 4) server specific optimization. In
the target selection step, the compiler finds heavy tasks from
profiling, filters out machine dependent tasks, and selects
only profitable tasks through static performance estimation.
In the memory unification code generation step, the com-
piler replaces all the memory allocation sites with UVA allo-
cation, and realigns memory layouts of structures to provide
the same virtual address space and data structures across mo-
bile devices and servers. If the target architectures have dif-
ferent address sizes such as 32 bits and 64 bits, or different
endianness, the compiler inserts translation codes. Here, the
Native Offloader compiler achieves information about target
architectures from back-end compilers. In the partition step,
the compiler partitions the IR codes for mobile devices and
servers, and inserts data communication codes only for ob-
jects that will be prefetched. The Native Offloader runtime
will communicate the others if necessary at run-time. Fi-
nally, the compiler applies additional optimizations such as
remote I/O and function pointer management that increase
coverages of offloading candidates. Section 3 describes de-
tails of the compiler.

The runtime system seamlessly executes the offloading-
enabled binaries on a mobile device and a server. Since the
Native Offloader compiler and the back-end compilers gen-
erate native codes for each machine, the runtime executes the
binaries without any virtual machine. To efficiently deliver
live-in values of the offloaded tasks from the mobile device
to the server, the runtime adopts copy-on-demand and com-
munication optimization. Section 4 presents more details of
the runtime.

3. NATIVE OFFLOADER COMPILER
Figure 2 illustrates how the Native Offloader compiler au-

tomatically transforms the original IR codes to be offloading-
enabled. The compiler selects profitable code regions with
profiling results (Section 3.1), and inserts memory unifica-
tion codes for memory instructions and data structures (Sec-
tion 3.2). The compiler partitions the original IR codes to
offloading-enabled ones (Section 3.3), and applies additional
optimization schemes to increase the coverage of offload-
ing candidates (Section 3.4). Figure 3 shows code examples
about how the Native Offloader compiler transforms a mo-
bile chess game application into offloading-enabled applica-
tions for a mobile device and a server.

3.1 Target Selection
Hot function/loop profiler: The hot function/loop pro-

filer measures execution time, invocation count, and mem-
ory usage of each function and loop in an application with a
profiling input. The profiling results will be used for the per-
formance estimator to predict execution time and select prof-
itable targets. Table 3 shows profiling results for the chess
game application in Figure 3(a).

Function filter: The function filter checks whether a func-
tion or a loop includes a machine specific instruction. If so,
the filter marks the function or loop as a machine specific
task, and rules out the task from offloading candidates. The



1

2 typedef struct {

3 char from, to; double score;

4 } Move;

5 typedef struct {

6 char loc, owner, type;

7 } Piece;

8 typedef double (

*

EVALFUNC) (Piece);

9

10

11 int maxDepth;

12 Piece

*

board;

13 EVALFUNC evals[7]={Pawn, ..., King};

14

15 int main () {

16

17

18 ...

19 scanf ("%d", &maxDepth);

20

21 board = malloc(sizeof(Piece)

*

64);

22 runGame ();

23 ...

24 return 0;

25 }

26

27 void runGame () {

28 bool gameover = false;

29 Move mv;

30 while (!gameover) {

31 mv = getPlayerTurn ();

32 updateBoard (mv);

33

34

35

36

37

38

39

40 mv = getAITurn ();

41

42 updateBoard (mv);

43 ...

44 }

45 }

46

47 Move getAITurn () {

48 Move mv;

49

50 for (i=0; i < maxDepth; i++) {

51 for (j=0; j < 64; j++) {

52 ...

53 char pieceType = board[j].type;

54 EVALFUNC eval = evals[pieceType];

55

56

57 mv.score += eval (board[j]);

58 ...

59 }

60

61 printf ("%lf\n", mv.score);

62 }

63 return mv;

64 }

65

66

67 Move getPlayerTurn () {

68 Move mv;

69 scanf ("%d, %d", &mv.from, &mv.to);

70 return mv;

71 }

(a) Original code

1 // Mem. layout realignment (Sec. 3.2)

2 typedef struct {

3 char from, to; char[6]; double score;

4 } Move_t;

5 typedef struct {

6 char loc, owner, type;

7 } Piece;

8 typedef double (

*

EVALFUNC) (Piece);

9

10 // Global var realloc. (Sec. 3.2)

11 int

*

maxDepth_re;
12 Piece

*

board;

13 EVALFUNC evals[7]={Pawn, ..., King};

14

15 int main () {

16 // Global var realloc. (Sec. 3.2)

17 maxDepth_re = u_malloc(sizeof(int));
18 ...

19 scanf ("%d", maxDepth_re);

20 // Unified heap management (Sec. 3.2)

21 board = u_malloc(sizeof(Piece)
*

64);

22 runGame ();

23 ...

24 return 0;

25 }

26

27 void runGame () {

28 bool gameover = false;

29 Move_t mv;

30 while (!gameover) {

31 mv = getPlayerTurn ();

32 updateBoard (move);

33 // Client partitioning (Sec. 3.3)

34 if (isProfitable (getAITurn_id)) {
35 requestOffload (getAITurn_id);
36 sendData ();
37 mv = receiveReturn ();
38 receiveData ();
39 } else {
40 mv = getAITurn ();

41 }
42 updateBoard (mv);

43 ...

44 }

45 }

46

47 Move_t getAITurn () {

48 Move_t mv;

49 // Global var realloc. (Sec. 3.2)

50 for (i=0; i <

*

maxDepth_re; i++) {

51 for (j=0; j < 64; j++) {

52 ...

53 char pieceType = board[j].type;

54 EVALFUNC eval = evals[pieceType];

55

56

57 mv.score += eval (board[j]);

58 ...

59 }

60

61 printf ("%lf\n", mv.score);

62 }

63 return mv;

64 }

65

66

67 Move_t getPlayerTurn () {

68 Move_t mv;

69 scanf ("%d,%d", &mv.from, &mv.to);

70 return mv;

71 }

(b) Partitioned code for mobile

1 // Mem. layout realignment (Sec. 3.2)

2 typedef struct {

3 char from, to; char[6]; double score;

4 } Move_t;

5 typedef struct {

6 char loc, owner, type;

7 } Piece;

8 typedef double (

*

EVALFUNC) (Piece);

9

10 // Global var realloc. (Sec. 3.2)

11 int

*

maxDepth_re;
12 Piece

*

board;

13 EVALFUNC evals[7]={Pawn, ..., King};

14

15 int main () {

16

17

18

19

20

21 // Stack change (Sec. 3.2)

22 executeAtNewStack (listenClient);
23 }

24

25

26 // Server partitioning (Sec. 3.3)

27 void listenClient () {
28 FcnID offID;
29 while (true) {
30 offID = acceptOffload ();
31 if (!offID) break;
32 receiveData ();
33 switch (offID) {
34 case getAITurn_id:
35 Move_t ret = getAITurn ();
36 sendReturn (ret);
37 break;
38 }
39 sendData ();
40 }
41 }
42

43

44

45

46

47 Move_t getAITurn () {

48 Move_t mv;

49 // Global var realloc. (Sec. 3.2)

50 for (i=0; i <

*

maxDepth_re; i++) {

51 for (j=0; j < 64; j++) {

52 ...

53 char pieceType = board[j].type;

54 EVALFUNC eval = evals[piecetype];

55 // Fcn ptr. converting (Sec. 3.4)

56 eval = s2mFcnMap (eval);
57 mv.score += eval (board[j]);

58 ...

59 }

60 // Remote output (Sec. 3.4)

61 r_printf ("%lf\n", mv.score);

62 }

63 return mv;

64 }

65

66 // Unused function removal (Sec. 3.3)

67 // Move getPlayerTurn ();

68

69

70

71

(c) Partitioned code for server

Figure 3: Simplified chess AI game code example
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IR for server
(Offloading target )

Partition (Section 3.3)

AITrn PlyrTrn for_i

9 8 9(Machine Specific)

9 8(Not Profitable)

for_j

9
9

Communication 
Code Insertion

Partition Algorithm

sndData();
reqOffload(Fcn);
rcvData();

rcvData();
execFcn(Fcn);
sndReturn();

Remote I/O 
Manager printf(“..”); r_printf(“..”);

Heap Allocation
Replacement

malloc(n);
free(ptr);

u_malloc(n);
u_free(ptr);

Referenced
Global Variable

Allocation

int gV;

pt = &gV;
x = gV;

int *pgV;
pgV = u_malloc(n);
pt = pgV;
x = *pgV;

Memory Unification
(Section 3.2)

Function  
Pointer

Mapping

*pM();

pM=fcn;

Memory Layout 
Realignment

struct Foo{
a,b

}

struct Foo_cvrt{
a, padding, b

}

Hot Fcn/Loop 
Profiler

Function 
Filter

Performance
Estimator

Stack 
Reallocation

execNewStk(LsnCli);

Server Specific Optimization (Section 3.4)

pS=m2sFcnMap(pM);
*pS();
pM=s2mFcnMap(fcn);

Mobile Server

Address Size 
Conversion

x = *ptr32 ptr64 = zExt(ptr32);
x = *ptr64 

Endianness 
Translation

x = *bigE
*bigE = x

x = bigToLtl(*bigE)
*bigE = ltlToBig(x) 

Figure 2: Structure of the Native Offloader compiler

filter considers an instruction machine specific if the instruc-
tion is one of the following instructions.

• Assembly instruction
• System call
• Unknown external library call
• I/O instruction

Assembly instructions are machine specific because they
are written only for the target mobile device. Since system
calls and unknown external library calls may cause side ef-
fects, the filter categorizes the instructions as machine spe-
cific instructions. I/O instructions use peripheral devices of a
mobile device, so the I/O instructions are machine specific.
Here, if the I/O functions are remotely executable through

Candidate
Profiling Results Performance Estimation

Exec.
Time

Invo.
Cnt.

Mem.
Size

Tideal

(sec)
Tc

(sec)
Tg

(sec)

runGame 27.0 1 20 MB 21.6 4.0 17.6
getAITurn 26.0 3 12 MB 20.8 7.2 13.6

for_i 26.0 3 12 MB 20.8 7.2 13.6
for_j 25.0 36 12 MB 20.0 86.4 -66.4

getPlayerTurn 1.5 3 10 MB 1.2 6.0 -4.8

Table 3: Profiling and performance estimation results of
the chess game in Figure 3. The estimator assumes that
the performance ratio (R) is 5 and the network band-
width (BW ) is 80Mbps.

remote I/O functions [23] in Section 3.4, the filter excludes
the I/O instructions from the machine specific instructions
because the remote I/O functions execute the original I/O
functions at the mobile device. For example, in the example
code in Figure 3(a), the filter rules out getPlayerTurn
and its callers such as runGame and main from offload-
ing candidates because getPlayerTurn includes a user
interactive I/O function call, scanf. However, although
getAITurn includes an output function call, printf that
is one of the remote output functions, the filter classifies
getAITurn as an offloading-enabled function.

Static performance estimator: The static performance
estimator calculates expected performance gains for the of-
floading candidates, and decides the final offloading targets.
Here, the static performance estimation is only used for code
generation. The Native Offloader runtime dynamically makes
offloading decisions for the targets at run-time through dy-
namic performance estimation with run-time values. There-
fore, the selected targets may not be offloaded at run-time.

Ideally, the performance gain is the difference between
the server execution time (T

s

) and the mobile execution time
(T

m

) on the same task. If the server is R times faster than
the mobile device on average, the ideal gain is T

m

⇤ (1� 1
R

).
However, there always exist communication overheads in of-
floading execution, so the actual gain is the difference be-
tween the ideal gain and the communication overhead (T

c

).
If an offloading task uses MMB memory and its network
bandwidth is BW , the task requires M

BW

seconds to send the
shared data in the memory. Since the shared data are com-
municated twice from a mobile device to a server and from
a server to a mobile device, the network cost should be dou-
bled. Moreover, if the task is invoked N

invo

times, the cost
should be multiplied due to repeated communication. As a
result, the performance estimator calculates the performance
gain (T

g

) according to Equation 1.
T
g

= (T
m

� T
s

)� T
c

= T
m

⇤ (1� 1

R
)� 2 ⇤ M

BW
⇤N

invo

(1)

Finally, the target selector chooses offloading targets if
their predicted performance gains are positive. For exam-
ple, Table 3 shows the performance estimation results based
on the profiling results for the chess game example in Fig-
ure 3(a). The estimator assumes that R is 5 and BW is
80Mbps, and calculates their performance gains. Although
all the candidates show positive ideal performance gains,



some of the candidates show negative numbers if the com-
munication costs are considered. Especially, although for_i
and for_j have similar execution times and memory us-
ages, for_j shows the negative performance gain because
it is invoked 12 times more than for_i causing huge ex-
pected communication costs. Since getPlayerTurn and
runGame are filtered due to the interactive I/O function call,
the target selector chooses getAITurn and for_i as of-
floading targets. In Figure 3, the Native Offloader compiler
offloads only getAITurn to simplify the example.

3.2 Memory Unification Code Generation
To execute offloading tasks across different architectures

without a virtual machine, Native Offloader provides the uni-
fied virtual address (UVA) space. Unlike distributed shared
memory systems [24, 25, 26, 27] that provide only a shared
memory view to different platforms, Native Offloader does
not only provide a shared memory view, but also unifies
memory layouts for an object across different architectures
because different architectures may allocate the same object
as different memory layouts. Before partitioning the offload-
ing targets, the memory unification code generator trans-
forms the whole IR codes to allocate objects as the same
memory layout on the same UVA space.

Heap allocation replacement: The Native Offloader com-
piler replaces memory allocation/deallocation call sites with
UVA allocation/deallocation function calls to allocate mem-
ory objects on the UVA space. For example, in Figure 3(b),
the compiler changes malloc at line 21 to u_malloc.
The compiler replaces all the allocation/deallocation sites
because a server may access an object not on the UVA space
due to imprecise static alias analysis.

Referenced global variable allocation: Since the Native
Offloader compiler transforms offloading targets at IR level,
back-end compilers may allocate global variables at differ-
ent addresses. As a result, if a global variable is referenced
at a mobile device and its pointer is dereferenced at a server,
the pointer may point a different object. To solve this prob-
lem, the Native Offloader compiler allocates all the refer-
enced global variables at the UVA space using u_malloc,
and transforms their uses to dereferenced instructions. For
example, since maxDepth is dereferenced at Line 19 in
Figure 3(a), the compiler transforms its declaration to int
*

maxDepth_re at Line 11 with an allocation site at Line
17, and changes all the its uses like Line 19 in Figure 3(b).

Memory layout realignment: Because there is no uni-
fied rule about a memory layout for an object in C language
across different platforms, the offloaded task may access dif-
ferent data with the same address on the UVA space. Fig-
ure 4 shows that a mobile device and a server allocate the
same object Movewith different memory layouts. If a server
accesses score in Move, the server will read a garbage
value from its memory although the virtual memory space is
unified. To overcome the memory layout difference, the Na-
tive Offloader compiler statically realigns the server mem-
ory layout to the mobile memory layout. Native Offloader
chooses the mobile one as a standard layout because the mo-
bile device is the default one in the computation offloading.

Address size conversion: If a mobile device and a server
use different address sizes such as 32 bits and 64 bits, the Na-

fr score 

score 

to fr to 

score 

IA32 Structure Layout ARM Structure Layout 

Realigning 

fr to 
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Figure 4: Memory layout realignment for type Move in
Figure 3. Gray, dark gray, and slashed boxes represent
meaningful data, paddings for memory layout realign-
ment, and outside of the structure respectively.

tive Offloader compiler inserts address size conversion codes
that extend 32-bit pointers to 64-bit pointers for every mem-
ory access. Since the compiler inserts the conversion codes
only when the target devices use different address sizes, the
compiler does not apply the address size conversion if the
targets use the same address size.

Endianness translation: Though memory spaces and lay-
outs are unified, a mobile device and a server may not read
the same value from the same address due to different endi-
anness. Like the address size conversion, the compiler in-
serts endianness translation codes for each memory access if
the mobile device and the server have different endianness.

3.3 Partition
For the offloading targets, the Native Offloader compiler

generates offloading-enabled IR codes for a mobile device
and a server separately.

Partition for mobile device: To allow the mobile device
dynamic offloading decision, the compiler inserts dynamic
performance estimation codes, and generates target codes
for both cases such as offloading execution and local exe-
cution. For the offloading execution, the compiler inserts
communication codes to exchange shared data and target in-
formation. For the local execution, the compiler just calls
the target as before. Figure 3(b) shows how the compiler
transforms the original code (Line 33-41).

Partition for server: The compiler generates the server
application codes that listen the offloading requests from the
mobile device and execute the requested target. To manip-
ulate different targets, the compiler inserts target function
calls in switch-case statements with the target ID. Fig-
ure 3(c) shows the generated server application that man-
ages offloading requests (Line 26-41). Here, the compiler
finds and removes unused functions at server-side with a call
graph. Figure 3(c) shows an unused function elimination ex-
ample on the getPlayerTurn function (Line 66-67).

Stack reallocation: Since the mobile device and the server
have the same virtual memory space, the server may corrupt
the mobile stack memory if their stack areas are overlapped.
To avoid this problem, the compiler changes the stack area
of the server to be far from the mobile stack area before ex-
ecuting the offloading tasks (Line 22 in Figure 3(c)).

3.4 Server Specific Optimization
Remote I/O manager: Since most hot code regions in-

clude I/O operations such as reading files and printing re-



sults, the function filter excludes most of the IR codes from
offloading targets, and Native Offloader cannot generate prof-
itable offloading codes. To increase the offloading coverage,
the Native Offloader compiler replaces well-known output
function call sites with remote I/O function calls [23]. The
remote I/O function sends I/O requests from the server to
the mobile device, so it allows the mobile device to remotely
execute the I/O operations at the local environment. For
example, the compiler replaces printf with r_printf

(Line 61 in Figure 3(c)). Here, most remote I/O functions
are output functions because a remote input operation re-
quires round-trip communication. For file streams, Native
Offloader supports remote input operations because it can
prefetch data and amortize the communication overheads.

Function pointer mapping: Like global variables, the
Native Offloader compiler cannot manipulate the addresses
of functions that the back-end compilers decide. As a re-
sult, if a code region includes a function pointer, the com-
piler cannot offload the code region. To increase the offload-
ing coverage, the compiler creates a function address table
that maps function addresses between a mobile device and
a server, and inserts an address conversion code before the
function pointer uses like eval at Line 56 in Figure 3(c).

4. NATIVE OFFLOADER RUNTIME
The Native Offloader runtime seamlessly and coopera-

tively executes the offloading-enabled tasks on a mobile de-
vice and a server. Figure 5 illustrates a life cycle of the
runtime: local execution, initialization, offloading execution
and finalization.

Local execution: Before executing an offloading-enabled
task, a mobile device locally executes the native application,
and a server waits for the task. Since only the mobile device
executes the application, the server memory is empty.

When the mobile device meets the offloading-enabled task,
the Native Offloader runtime dynamically estimates local
execution time and offloading execution time for the task.
Unlike the static performance estimation of the Native Of-
floader compiler, the dynamic performance estimation re-
flects the current network bandwidth, memory usage, and
target execution time information, so the Native Offloader
runtime can avoid offloading under unfavorable situation such
as slow network connection.

Initialization: If the dynamic performance estimation de-
cides to offload the task, the Native Offloader runtime initial-
izes the server to execute the offloaded task. First, the mo-
bile device sends offloading information such as offloaded
task ID, current stack pointer, and page table to the server.
Second, the server creates a new process for the offloaded
task with a different stack space from the mobile stack. This
stack reallocation allows stacks of the server and the mobile
device not to be overlapped on the UVA space. Then, the
server updates its page table, so the server can have the same
UVA space with the mobile device. To reduce communica-
tion costs, the mobile device prefetches parts of mobile heap
memory to the server that are most likely used in the server.

Offloading execution: Although the server updates its
page table, there are physical pages not yet copied. During
offloading execution, if the server accesses data in one of the
physical pages, a page fault occurs for the page. The Na-
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Figure 5: Life cycle of an offloaded task

tive Offloader runtime hooks the page fault, and copies the
physical page from the mobile device to the server (copy-
on-demand). Once the page is copied, the server can access
data in the page again and again without a page fault. Here,
the mobile device and the server can access the shared data
without any address translation because they have the same
UVA space. To reduce communication costs, the Native Of-
floader runtime also checks dirty pages and sends only the
dirty pages to the mobile device after the offloaded task.

Finalization: After finishing the offloading execution, the
server sends a termination signal to the mobile device with a
return value, dirty pages, and updated page table. To termi-
nate the offloading process without keeping the offloading
data, the server sends all the dirty pages to the mobile de-
vice instead of using the copy-on-demand on the mobile de-
vice. Since the Native Offloader runtime sends only the dirty
pages, the amount of communication is not huge in practice.
After updating the modified program state, the mobile device
resumes its local execution after the offloaded task.

While communicating data between the mobile device and
the server, the Native Offloader runtime batches and com-
presses the communicated data to reduce the communica-
tion overheads. The batching reduces the number of com-
munication operations by keeping the communicated data in
a buffer and sending the buffer once. This batching pro-
cess amortizes the overheads from the communication func-
tion calls. The runtime also compresses the communicated
data before sending it to overcome the limited network band-
width. Here, since compression requires much more time
than decompression, the Native Offloader runtime applies
the compression only to the server-to-mobile communica-
tion to avoid performance slowdown due to the compression
overhead on the mobile device.



Program Description LoC Exec. Offloaded Referenced Fcn. Target Function Cover. Inv. Com.
Time Function GV. Ptr. Traf.

164.gzip Compression 5.5k 15.3 20 / 89 141 / 241 9 spec_compress 98.90 1 151.5
175.vpr FPGA Simultion 11.3k 26.9 9 / 272 672 / 760 3 try_place_while.cond 99.07 1 0.8

177.mesa 3-D Graphic 42.2k 120.2 11 / 1105 608 / 627 1169 Render 99.02 1 20.3

179.art Image 5.7k 325.5 7 / 26 52 / 79 0 scan_recognize 85.44 1 16.4Recognition

183.equake Seismic Wave 1.0k 334.0 5 / 28 83 / 104 0 main_for.cond548 99.44 1 16.5Propagation

188.ammp Computational 9.8k 878.0 17 / 179 324 / 333 66 AMMPmonitor 13.53 2 17.0
Chemistry tpac 85.60 1 17.6

300.twolf Place/Route 17.8k 157.8 3 / 191 566 / 838 0 utemp 99.84 1 3.3Simulator
401.bzip2 Compression 5.7k 27.0 58 / 100 95 / 120 24 spec_compress 98.79 1 134.3

429.mcf Vehicle 1.6k 104.8 19 / 24 39 / 43 0 global_opt 99.55 1 47.9Scheduling

433.milc Quantum 9.6k 365.8 61 / 235 445 / 493 6 update 96.21 2 13.4Chromodynamics
445.gobmk Go Game 156.3k 361.8 6 / 2679 21844 / 22090 77 gtp_main_loop 99.96 1 25.7
456.hmmer Gene Sequence 20.6k 31.3 36 / 538 995 / 1050 36 main_loop_serial 99.99 1 0.3
458.sjeng Chess Game 10.5k 950.8 91 / 144 495 / 624 1 think 99.95 3 240.2

462.libquantum Quantum 2.6k 71.0 62 / 116 0 / 44 0 quantum_exp_mod_n 92.56 1 6.3Computing
464.h264ref Video Encoder 59.5k 78.2 48 / 1333 2012 / 2822 457 encode_sequence 99.79 1 17.1

470.lbm Fluid Dynamics 0.9k 1444.9 1 / 19 16 / 20 0 main_for.cond 99.70 1 643.6

482.sphinx3 Speech 13.1k 375.2 124 / 370 1265 / 1329 14 main_for.cond 98.39 1 34.0Recognition

Table 4: Details of offloaded programs, including lines of code; the total execution time (sec) on the smartphone with
the evaluation input; numbers of offloaded functions among all the functions, referenced global variables among all the
global variables, and function pointer uses; and offloaded targets, their coverage (%), the number of invocations and
communication traffic per invocation (MB).

5. EVALUATION
Native Offloader is evaluated on a Samsung Galaxy S5

smartphone with a 2.5GHz quad-core Krait 400 CPU and a
Dell XPS 8700 desktop server with an Intel 3.60GHz quad-
core i7-4790 processor. The smartphone runs the Android
4.4.2 (KitKat) operating system, and the desktop server runs
Ubuntu 14.04. To analyze how the network environments
affect the performance, Native Offloader is evaluated under
two different wireless environments such as slow connec-
tion (802.11n, maximum bandwidth is 144Mbps) and fast
connection (802.11ac, maximum bandwidth is 844Mbps).
A Monsoon Power Monitor [28] is used to measure battery
consumption at the smartphone. The Native Offloader com-
piler builds on the LLVM compiler infrastructure [29].

The Native Offloader prototype is evaluated with 17 na-
tive C programs from SPEC CPU2000 and CPU2006 [30]
as listed in Table 4. Among all the C programs in SPEC
CPU2000 and CPU2006, we exclude 400.perlbench and
403.gcc because the LLVM compiler cannot compile the
programs for the smartphone. Also, Native Offloader can-
not find any profitable offloading target for 197.parser,
254.gap and 255.vortex. The evaluation cannot in-
clude the mobile applications in Table 2 due to lack of a
bridge between LLVM and Android NDK and lack of multi-
threading supports of the Native Offloader framework.

Table 4 illustrates features of the evaluated programs and
offloading statistics. Offloaded functions and loops cover
more than 85% of the whole program execution time for
all the programs. The Native Offloader compiler finds more

than one offloading target like the 188.ammp case, and ex-
ecutes the same target multiple times if the target is invoked
multiple times like AMMPmonitor, update and think.

Figure 6 presents the whole program execution time and
battery consumption of the offloaded applications normal-
ized to local execution time and battery consumption on the
smartphone. In each graph, the x-axis shows evaluated appli-
cations and the y-axis shows the normalized execution time
and battery consumption. All the execution times and bat-
tery consumption were averaged over five runs. We use dif-
ferent inputs for profiling and evaluation.

5.1 Execution Time
Figure 6(a) shows that Native Offloader achieves perfor-

mance speedups for all the evaluated programs in slow and
fast wireless environments, and reduces 82.0% and 84.4%
of program execution time on geomean of program execu-
tion time. Ideal offloading means execution time without
any overhead such as data communication and translation.

For 175.vpr, 179.art, 183.equake, 188.ammp,
433.milc, 456.hmmer and 482.sphinx3, Native Of-
floader achieves almost ideal performance speedups. These
programs require little communication compared to compu-
tation. For example, the offloaded function of 456.hmmer
that searches against a gene sequence DB takes only the ini-
tialized parameters as its inputs. Therefore, 456.hmmer
communicates only a small amount of data such as the input
parameters and printed results.

Native Offloader achieves performance improvement for



(a) Normalized execution time

(b) Normalized battery consumption
Figure 6: Execution time and battery consumption normalized to local execution in different network environments. *
means non-offloaded by the dynamic performance estimation.

458.sjeng that invokes think multiple times even on
the slow network environment. Considering that 458.sjeng,
a chess game, is one of the representative user-interactive
applications, the speedup shows that Native Offloader can
successfully offload user-interactive applications.

Figure 7 presents overheads of Native Offloader for all
the evaluated programs in different network environments.
To deeply analyze the performance of Native Offloader, we
break the total execution time into computation, function
pointer translation, remote I/O operation and communica-
tion. The computation time is equal to the ideal execution
time. The function pointer translation overhead is spent for
Native Offloader to find a correct address of a function pointer.
The remote I/O operation overhead is the execution time of
remote I/O functions. The communication overhead is spent
for Native Offloader to transfer memory. Network environ-
ments such as bandwidth and latency affect the communica-
tion overhead. Here, Figure 7 does not illustrate the address
size conversion that changes 32-bit pointers to 64-bit ones
due to its negligible overhead. Moreover, Native Offloader
does not suffer from endianness translation overheads be-
cause the mobile device and the server use the same endian-
ness, little-endian.
164.gzip, 401.bzip2, 429.mcf, 458.sjeng and

470.lbm have a huge amount of communication compared

to their execution time. Since the communication overhead
increases in the slow network, the programs are very sensi-
tive to the network bandwidth. Therefore, for the slow net-
work connection, though the Native Offloader compiler gen-
erates offloading-enabled codes, the dynamic performance
estimator in the Native Offloader runtime decides not to of-
fload the offloading target. For example, Native Offloader
does not offload spec_compress from 164.gzip ac-
cording to Equation 1. The dynamic performance estima-
tion allows Native Offloader not to suffer from performance
slowdown in an unexpected slow network environment.
300.twolf, 445.gobmk and 464.h264ref suffer

from high remote I/O operation overheads. During the of-
floading execution, 300.twolf reads a file about cell in-
formation to optimally place cells, 445.gobmk reads files
about previous play records, and 464.h264ref reads a
video file to encode. Unlike the other programs, these pro-
grams execute remote input operations that require expen-
sive round-trip communication. Therefore, the programs have
higher remote I/O operation overheads than the others.

The analysis results show that 445.gobmk, 458.sjeng
and 464.h264ref spend lots of time to translate func-
tion pointers. 445.gobmk and 458.sjeng have function
pointer arrays such as commands and evalRoutines to
manage next commands and piece movements respectively.



Figure 7: Breakdown of overheads. s and f mean slow and fast networks.

(a) 458.sjeng (fast network) (b) 445.gobmk (fast network) (c) 445.gobmk (slow network)

Figure 8: Power consumption over time for 458.sjeng and 445.gobmk

464.h264ref has function pointers about various SAD
(Sum of Absolute Differences) computations for video qual-
ity metrics. Since the programs refer the function pointers
every time when they execute commands, simulate a piece
movement and encode each frame, the function pointers are
dereferenced a huge number of times causing high function
pointer translation overheads.

Though frequent remote I/O operations and function pointer
translations cause high overheads, the optimizations play a
key role in increasing offloading coverage and performance
because many applications include I/O operations and func-
tion pointers in their hot functions and loops.

5.2 Battery Consumption
Figure 6(b) presents that Native Offloader saves geomeans

of 77.2% and 82.0% battery consumption in the slow and
fast wireless environments compared to the local execution.
Native Offloader reduces battery consumption for all the pro-
grams except 164.gzip that requires huge power for com-
municating an input file and its compressed result. Since the
performance estimator focuses on the execution time reduc-
tion, the dynamic performance estimator cannot catch the
additional battery consumption of 164.gzip.

Generally, battery consumption results are very similar to
the execution time results because the battery usage is pro-
portional to the execution time. However, 300.twolf,
445.gobmk, 464.h264ref, and 482.sphinx3 con-
sume relatively more battery than the ideal execution com-

pared to the other programs. For detail analysis about the
battery consumption, Figure 8 illustrates required power over
time for two similar programs such as 458.sjeng and
445.gobmk. In the fast network connection, the smart-
phone consumes about 300mW for idle state, 1350mW for
waiting signals, 2000mW for data reception, and 2000mW
to 5000mW for data transmission. During three invocations
of the offloaded function, 458.sjeng spends power more
than 2000mW only at the beginning and the end of each in-
vocation to communicate the shared data and results. How-
ever, 445.gobmk does not only spend huge power at the
beginning and the end of the offloading task, but also con-
tinuously spends 2000mW to manage remote I/O requests.
As a result, 300.twolf, 445.gobmk, 464.h264ref,
and 482.sphinx3 consume relatively more battery than
the others due to many remote I/O operations.

Especially for 300.twolf and 445.gobmk, Native Of-
floader spends more battery on the fast network environ-
ment than the slow one unlike the others. Figure 8(b) and
Figure 8(c) show power consumption over time in differ-
ent network environments for 445.gobmk. The fast net-
work connection requires 2000mW to handle remote I/O re-
quests while the slow one requires 1700mW. As a result, for
300.twolf and 445.gobmk that frequently request re-
mote I/O operations more than the other programs, Native
Offloader consumes more battery in the fast network envi-
ronment than in the slow environment despite shorter execu-
tion time.



System Fully-
Automatic

Offloading
Decision

Requires
VM Support

Target
Language

Complexity of
Target App.

Cuckoo [7] No (Manual) Static Yes Java Complex
Li et al. [10] No (Manual) Static No C Simple
Roam [2] No (Manual) Dynamic Yes Java Complex
MAUI [4] No (Annotation) Dynamic Yes C# Complex
ThinkAir [8] No (Annotation) Dynamic Yes Java Complex
Wang and Li [14] No (Annotation) Dynamic No C Simple
DiET [13] Yes Static Yes Java Simple
Chen et al. [1] Yes Dynamic Yes Java Simple
HELVM [12, 15] Yes Dynamic Yes Java Simple
OLIE [6, 11] Yes Dynamic Yes Java Complex
CloneCloud [3] Yes Dynamic Yes Java Complex
COMET [5] Yes Dynamic Yes Java Complex
CMcloud [9, 31] Yes Dynamic Yes Java Complex
Native Offloader [This paper] Yes Dynamic No C Complex

Table 5: Comparison of compuation offload systems

6. RELATED WORKS
Native Offloader automatically finds heavy and machine

independent tasks from general-purpose native mobile ap-
plications without any annotation, and achieves performance
speedups by offloading the tasks without a virtual machine.
Table 5 summarizes related works of this paper.

Static partitioning algorithms [10, 14, 21, 22] represent a
program as a graph in which vertices are computation tasks
and edges are data flows between the tasks. The algorithms
partition the vertices into mobile device tasks and server
tasks, and insert communication codes for the edges between
mobile device tasks and server tasks. However, the algo-
rithms work well only for well-analyzable applications such
as media encoding and decoding programs because of con-
servative static alias analysis. If an application has irregular
data access patterns and control flows, the algorithms should
conservatively send all the data that the offloaded tasks may
touch, and pay unnecessary communication costs. Since the
Native Offloader runtime delivers only accessed data via the
copy-on-demand on the unified virtual address space (UVA),
Native Offloader offloads general-purpose applications with-
out suffering from the huge communication overheads.

Roam [2] and Cuckoo [7] propose programming models
for computation offloading, and offload complex general-
purpose applications. However, they require programmers to
manually analyze and transform the applications. MAUI [4]
and ThinkAir [8] automatically transform the applications to
offloading-enabled ones, but they still require programmer
annotations to find the offloading targets. With the profiler
and the performance estimator, Native Offloader automati-
cally finds and transforms offloading targets.

To alleviate programmers’ efforts, OLIE [6, 11], DiET [13]
HELVM [12, 15], and CloneCloud [3] also automatically
find and partition offloading tasks without any programmer
annotation. However, since these computation offloading
systems rely on virtual machines such as Java VM and Mi-
crosoft .Net CLR, the systems cannot offload native applica-
tions. Cooperating with front-end and back-end compilers,
Native Offloader automatically generates offloading-enabled
native binaries for each platform, and executes the binaries
without a virtual machine.

Like COMET [5] that provides distributed shared mem-
ory for computation offloading, Native Offloader provides a

shared memory view for a mobile device and a server via
the UVA space. Unlike COMET [5], Native Offloader ad-
ditionally inserts translation codes that make the native ap-
plications have the same memory layout for the same object
across different platforms.

To reduce communication overheads, Cloudlet [32] pro-
poses the use of a nearby server instead of a cloud server
that has higher latency and lower bandwidth. With Cloudlet,
Native Offloader can reduce the communication latency. In
addition, Rio [23] suggests a device driver for I/O sharing
between mobile devices and optimizes remote I/O perfor-
mance close to the local one. With Rio, Native Offloader
can alleviate the remote I/O operation overheads.

Native Offloader uses static and dynamic performance es-
timation results for the compiler and the runtime to make
offloading decisions. Narayanan et al. [33] and CMcloud [9,
31] use logging data and machine learning methods to pre-
dict the performance of mobile applications. Wolski el al. [34]
and NWSLite [35] propose bandwidth-aware performance
prediction to count network costs. With these prediction
algorithms, the Native Offloader compiler and runtime can
predict the performance more precisely.

Native Offloader provides the UVA space that enables of-
floading tasks to share data across different architectures with-
out a virtual machine. Distributed shared memory (DSM)
systems [24, 25, 26, 27] provide the shared memory view
across different platforms, but they cannot unify different
memory layouts of the different architectures. With memory
layout realignment, address size conversion, and endianness
translation, Native Offloader does not only provide a shared
memory view, but also unifies memory layouts across differ-
ent architectures.

7. CONCLUSION
Native Offloader is the first prototype framework for auto-

matic cross-architecture computation offloading for general-
purpose native application. With automatic architecture-aware
partitioning and memory unification across different archi-
tectures such as ARM and x86, Native Offloader automati-
cally transforms 17 native C applications from SPEC CPU2000
and CPU2006, and achieves a geomean whole-program speedup
of 6.42⇥ and battery saving of 82.0%.
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