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Abstract—Thanks to the recent advances in Deep Neural
Networks (DNNs), DNN-based object detection systems become
highly accurate and widely used in real-time environments such
as autonomous vehicles, drones and security robots. Although the
systems should detect objects within a certain time limit that can
vary depending on their execution environments such as vehicle
speeds, existing systems blindly execute the entire long-latency
DNNs without reflecting the time-varying time limits, and thus
they cannot guarantee real-time constraints. This work proposes
a novel real-time object detection system that employs multi-
path neural networks based on a new worst-case execution time
(WCET) model for DNNs on a GPU. This work designs the
WCET model for a single DNN layer analyzing processor and
memory contention on GPUs, and extends the WCET model
to the end-to-end networks. This work also designs the multi-
path networks with three new operators such as skip, switch,
and dynamic generate proposals that dynamically change their
execution paths and the number of target objects. Finally, this
work proposes a path decision model that chooses the optimal
execution path at run-time reflecting dynamically changing en-
vironments and time constraints. Our detailed evaluation using
widely-used driving datasets shows that the proposed real-time
object detection system performs as good as a baseline object
detection system without violating the time-varying time limits.
Moreover, the WCET model predicts the worst-case execution
latency of convolutional and group normalization layers with
only 27% and 81% errors on average, respectively.

I. INTRODUCTION

Identifying where an object exists and what the object is,
object detection plays a crucial role in autonomous vehicles,
drones and security robots. Thanks to the recent advances in
Deep Neural Networks (DNNs), the object detection systems
begin to heavily utilize DNNs [1]–[4] which provide superior
accuracy over traditional algorithms [5], [6]. The DNN-based
object detection systems employ a series of layers that extract
the representative features of objects, increasing accuracy of
the region identification and the object classification.

The DNN-based object detection systems should respect
the real-time constraints that can vary depending on their
execution environments. Since the systems are widely adopted
in real-time environments where missing time constraints may
cause a catastrophe such as collisions, the systems should
detect objects within a certain time limit. Here, the time
limit can vary depending on the execution environments. For
example, when a car drives fast, the system should quickly
detect objects in the front to avoid collisions. On the other

hand, when the car drives slow, the system has a longer time
to detect the objects because the time for the car to reach the
objects increases. Therefore, the DNN-based object detection
systems should be aware of the time-varying time limits.

One important aspect of the real-time object detection sys-
tems is that their execution latency and accuracy conflict with
each other. First, deeper DNNs that have more layers generally
outperform shallower ones; however, deeper DNNs tend to
incur higher execution latency than the shallower ones. The
DNN-based object detection systems [1]–[4] make predictions
by extracting and evaluating features from a given image
through a series of spatial operations such as convolutions and
pooling (e.g., ResNet [7]). Additional operations on additional
layers can increase the accuracy, but also increase execution
latency. Second, each of the identified regions requires to
execute DNNs. The object detection proposes a set of image
regions that may contain an object. Considering a larger num-
ber of the region proposals improve the accuracy; however,
increasing the number of the region proposals also leads
to higher execution latency. Therefore, the real-time object
detection systems must be aware of the trade-offs between the
latency and accuracy along with the varying time constraints.

Unfortunately, the existing DNN-based object detection
systems [1]–[4] cannot satisfy the varying time constraints.
Although Faster R-CNN [4] and Mask R-CNN [3] obtain
much lower execution latency compared with R-CNN [1] and
Fast R-CNN [2], the networks are not aware of real-time
constraints and frequently exceed the time limits. Dynamic
model compression and DVFS [8]–[15] can dynamically adjust
execution latency. However, since the model compression is
limited to pruning specific filters of convolutional layers,
and the DVFS suffers from huge overheads on changing
voltage and frequency, they cannot efficiently satisfy the
varying time constraints of object detection. Similarly, anytime
algorithms [16]–[19] can meet the dynamic time constraints by
changing their execution paths according to a given time limit,
but their applicability is limited to a single algorithm, so they
cannot be used in object detection.

This work proposes a novel real-time object detection
system that employs multi-path neural networks based on a
new worst-case execution time (WCET) model for DNNs
on a GPU. The multi-path neural networks provide several
execution paths having different latency-accuracy trade-offs,
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Fig. 1: Overall structure of Faster R-CNN and its execution
time and average precision with different configurations

and the WCET model shows expected latencies for each path
for the worst-case, so the system can dynamically select and
execute an appropriate execution path satisfying the time-
varying time constraints. To design and implement the system,
this work first designs the WCET model for a single-layer of
DNNs analyzing processor and memory contention on GPUs,
and extends the WCET model to the end-to-end networks.
Second, this work designs the multi-path networks with three
new operators such as skip, switch, and dynamic generate
proposals that dynamically change their execution paths. The
skip operator allows the system to bypass a few consecutive
DNN layers, the switch operator lets the system select one of
the series of DNN layers, and the dynamic generate proposals
adjusts the number of target object regions. The skip and
switch operators are inserted into multiple locations of a target
DNN, so the system can dynamically adjust the remaining
execution paths at run-time. Finally, this work proposes a path
decision model that chooses the optimal execution path at run-
time reflecting dynamically changing environments and time
constraints.

To demonstrate the real-time awareness of the pro-
posed real-time object detection system, this work trains
and evaluates the system with well-known driving datasets:
Cityscapes [20] and BDD100K [21]. The evaluation results
demonstrate that the system adaptively changes its execution
paths in object detection respecting the time-varying time
constraints without any deadline miss while achieving similar
accuracy to a baseline single-path object detection system.
Moreover, the evaluation shows that the WCET model pre-
dicts the worst-case execution latency of convolutional and
group normalization layers with only 27% and 81% errors on
average, respectively.

In summary, the contributions of this paper are:

• Worst-case execution latency modeling for DNN-based
object detection on GPUs

• Multi-path neural networks which adaptively change their
execution paths according to a given time constraint

• Path decision model that dynamically determines the ex-

ecution path of the multi-path neural networks reflecting
the varying time constraints

II. BACKGROUND & MOTIVATION

A. Deep Neural Networks for Object Detection

Object detection systems can greatly benefit from highly
accurate DNNs. Object detection networks can be largely cat-
egorized as one-stage networks such as Single Shot Detector
(SSD) [22] and YOLO [23]–[25] and two-stage networks such
as R-CNN [1], Faster R-CNN [3] and Mask R-CNN [4].
The major difference between one-stage networks and two-
stage networks is whether region proposal and classification
steps are separated or not. One-stage networks integrate region
proposal and classification steps to reduce the inference time,
whereas two-stage networks separate region proposal and
classification steps to improve object localization. Among the
two kinds of networks, this work focuses on two-stage net-
works because the two-stage networks have more configurable
features to solve dynamic time constraint problems.

First employed by R-CNN [1], two-stage object detection
networks first identify region proposals (i.e., bounding boxes),
which may contain a valid object, and classify the valid
objects in the region proposals. We provide a brief background
on Faster R-CNN [3], one of the most widely-used two-
stage object detection networks due to its low amount of
computation over its predecessors (e.g., R-CNN [1] and Fast
R-CNN [2]), as an example.

Faster R-CNN consists of the following four major phases
(Fig. 1(a)): PRE, CONV, RPN and HEAD.

1) PRE is a pre-processing phase which applies basic
routines such as scaling and cropping to a given image,
so that the size of the image matches what the rest of
the DNN expects.

2) CONV contains a deep convolutional network (mainly,
ResNet [7]) to extract high-level features of potential
objects useful for RPN and HEAD

3) RPN contains a region proposal network which proposes
region proposals which indicate specific regions in the
given image to look into.

4) HEAD is a post-processing phase which finally classi-
fies the object in each region from RPN by examining
the high-level features with a convolutional network.

Faster R-CNN has various configurable parameters that this
work can exploit to achieve target accuracy-latency trade-offs.
Fig. 1(b) and Fig. 1(c) show the execution time breakdown
and average precision of simple Faster R-CNN networks with
different configurations. Here, average precision (AP) indi-
cates a metric for evaluating the accuracy of object detection
systems [26]. AP is defined as the average proportion of
the image area where the inferred bounding boxes correctly
overlap the ground truth bounding boxes.

The graphs clearly demonstrate that the accuracy-latency
trade-offs in the object detection networks. First, the graph
shows that the deeper CONV phase (ResNet-101) generates
more accurate object detection results while consuming more



time than the shallower CONV phase (ResNet-50). Similarly,
the larger number of region proposals (1000P) enhances the
accuracy of the object detection networks than the smaller
number of region proposals (500P). In summary, the depth
of the CONV phase and the number of region proposals to
generate can affect both the execution time and the accuracy
of object detection networks. This work uses this property to
make object detection networks to adapt time-varying real-
time requirements.

B. Deep Neural Networks on Graphics Processing Units

Deep neural networks demand high throughput to achieve
low execution latency as they incur large amounts of com-
putation. To satisfy the high performance demands, Graphics
Processing Units (GPUs), which provide orders of magnitude
higher throughput than CPUs [27], have become a popular
platform. GPUs achieve high throughput by having thousands
of simple arithmetic cores and high-bandwidth off-chip mem-
ory. A GPU consists of Streaming Multiprocessors (SMs),
which have a fixed number of GPU cores, e.g., 64 cores in
NVIDIA Turing GPUs. Each SM contains warp schedulers,
a register file, shared memory, and L1 caches. The warp
scheduler groups the threads into a set of warps, which is
the scheduling granularity of each SM (e.g., 32 threads/warp
in NVIDIA GPUs), and executes the threads within the same
warp in a lock-step manner. When the threads issue memory
access requests, the L1 caches interact with the global L2 data
cache and DRAM memory to serve the requests.

To fully exploit the high throughput of GPUs, programmers
need to write GPU-friendly functions called kernels. Then,
programmers can initiate the execution of a GPU kernel by
specifying the total number of threads and the thread block
size, the programmer-specified number of threads that share
a set of hardware resources. Since the threads within the
same thread block use the shared memory, the GPU assigns
the threads of a thread block to a specific SM as a whole.
The computations specified by the kernel depend on the
executing thread ID, so the parallel execution of the kernel by
the threads follows the Single Instruction, Multiple Threads
(SIMT) execution model [28].

Due to the rapid growth of deep learning, GPU vendors
provide a set of kernels implementing representative DNN
operations and optimized for their GPUs (e.g., cuDNN [29]).
By invoking the optimized kernels, users can execute the layers
of their neural networks on their target GPUs to achieve high
throughput. Using the DNN libraries, deep learning frame-
works typically execute one layer on a GPU at a time as each
neural network layer incurs a large amount of computation.

C. WCET Analysis for DNN Executions on GPUs

Real-time systems demand Worst-Case Execution Time
(WCET) analyses on their target applications and platforms
to ensure real-time guarantees. The WCET analyses verify
the system’s real-time awareness by calculating the longest
possible execution latency of the systems; if a WCET analysis
on a target system predicts that the execution of the system
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Fig. 2: Offline training processes

always completes within a given time limit, we can validate
that the system is fully real-time aware. When predicting the
WCET of a system, a naı̈ve, conservative WCET analysis
would overestimate the system’s execution latency; however,
it is desirable to minimize the gap between the actual and the
estimated execution latencies as minimizing the gap allows us
to predict the WCET of the system more accurately.

Some prior studies perform WCET analyses on GPUs so
that GPU-based real-time systems can evaluate their real-time-
awareness [30], [31]. Unfortunately, it is difficult to employ
the WCET analyses for GPU-based object detection networks
as the WCET analyses demand the source code of their target
applications and most DNN libraries for GPUs are proprietary
(e.g., NVIDIA’s cuDNN).

As an alternative, prior studies estimate the execution la-
tency of DNNs on GPUs by employing linear regression [32],
[33]; however, their linear regression for DNNs is based on
high-level tensor information such as input channel size with-
out considering GPU architectures and memory contention.
Since DNNs read and write a large amount of memory,
there exist contentions on global and shared memory affecting
the execution latency. Thus, the existing memory contention-
oblivious linear regression fails to precisely estimate the
WCET, and then elaborate architectural modeling that reflects
memory contention is necessary.

In conclusion, real-time object detection systems demand
a new WCET analysis which can avoid detailed source-level
analyses and provide an architectural background.

III. SYSTEM DESIGN

This work designs a real-time object detection system which
satisfies dynamic time constraints using multi-path neural
networks. Fig. 2 and Fig. 3 show the overall design of our
system. To allow the system to satisfy the dynamic time
constraints, the multi-path neural networks introduce skip and
switch operators which provide alternative execution paths to
the system. The skip operators allow the system to bypass
a few consecutive layers, and the switch operators let the
system select the optimal execution path among multiple
series of layers. At run-time, the multi-path neural networks
select appropriate execution paths through the skip and switch
operators and by dynamically adjusting the numbers of region
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proposals the multi-path neural networks produce. When se-
lecting the appropriate execution paths, the system considers
the remaining time limits and the dynamic system states such
as the speed of a vehicle (Fig. 3). If the deadline is tight, then
the multi-path neural network chooses a shorter execution path
and generates a small number of region proposals to reduce
the execution latency. On the other hand, if the deadline is
loose, then the multi-path network achieves higher accuracy
by selecting a longer execution path and by generating a large
number of region proposals.

To design the multi-path neural networks, the system first
profiles a sample neural network on its target platform (Fig. 2).
Our system uses an existing object detection network [3] as
the sample network. To collect necessary profiling results,
the system profiles relevant performance metrics such as total
execution cycles by running the sample neural network several
times on the target GPU. Based on the profiling results, the
system generates a multi-path neural network by inserting the
skip and switch operators to the sample network. Then, the
system (re-)trains the multi-path neural network to minimize
the potential accuracy losses by the skip and switch operators.
When the training process gets completed, the system sends
the trained multi-path neural network to the target platform.

During run-time, the system satisfies the dynamic time
constraints by (1) utilizing the skip and switch operators of
the multi-path neural network, and (2) dynamically adjusting
the number of region proposals the multi-path neural network
should produce. Depending on the remaining time limits, the
skip and switch operators select the appropriate execution
paths which do not violate the time limits. When selecting
the appropriate execution paths, the operators utilize a WCET
model to predict the execution latency of an execution path. To
construct the WCET model, the system employs an interval-
driven WCET analysis for single-layer executions and extends
the WCET analysis for the entire multi-path neural network.
The system also adjusts the number of region proposals to
ensure real-time guarantees; when the system is running out
of time (i.e., the deadline is tight), the system reduces the
number of region proposals to reduce the execution latency.

By employing the multi-path neural networks and the
WCET model, our system ensures the real-time guarantees and
maximizes the object detection accuracy. The skip and switch
operators provide alternative execution paths to satisfy the
dynamic time constraints. The WCET model lets the operators
select the optimal execution path which does not violate the

dynamic time constraints and achieve the highest accuracy
among the possible execution paths.

IV. WCET ANALYSIS FOR NEURAL NETWORKS

In this section, we present our GPU performance model
along with WCET analysis. Our real-time object detection sys-
tem utilizes the WCET analysis to ensure real-time guarantees.

A. Basic Assumptions

To model the execution latency of DNNs on GPUs, we make
the following key observations on our target GPU platforms.

First, we observe that the number of active threads in
a warp is constant for different DNN layers in an object
detection DNN. We measure warp execution efficiency using
the NVIDIA profiling tool [34] when executing convolution
and group normalization layers of a sample Fast R-CNN
network. The warp execution efficiency indicates the ratio
of active threads over the maximum possible active threads
in a warp (i.e., warp size). Fig. 4(a) shows the cumulative
distribution of the warp execution efficiency on NVIDIA GTX
1050 Ti and NVIDIA Titan Xp GPUs. For every different
layer, the GPU kernels that implement the DNN layers always
obtain 100% warp execution efficiency. In other words, each
warp always has the maximum number of active threads
supported by a processor.

Second, we find that each SM has at least one active warp
during execution if no memory contention exists. Using
the NVIDIA profiling tool, we measure the average number
of eligible warps per cycle. The metric indicates the average
number of warps that are ready to issue their next instructions
per cycle. As Fig. 4(b) shows, about 97.7% of different layers
have at least one eligible warp per cycle on average. Based on
the profiling result, we can safely assume that each SM can
always schedule at least one warp if no memory contention
exists. Note that having no memory contention is necessary
for the assumption as memory contention causes warp stalls
and possibly reduces the number of eligible warps per cycle.

Third, we focus on the Greedy-Then-Oldest (GTO) warp
scheduling policy which is the most common warp scheduling
policy in the current GPUs. The GTO policy schedules the
instructions of a warp until the warp stalls. Upon a stall, the
policy selects the warp whose instructions have not been issued
for the longest amount of time.

B. Single-layer Performance Modeling

As a DNN consists of a series of different layers, we
first model single-layer performance as the first step toward
DNN performance modeling. Our modeling utilizes an interval
analysis where an interval is defined as the duration of a warp
from the time when the warp is rescheduled to the time when
the warp can issue new instructions after the warp is stalled. In
Fig. 5(a), Cexec

i denotes the number of execution cycles until
the warp stalls, and Cstall

i denotes the number of stall cycles
until the warp is ready to issue an instruction. Then, Cexec

i

and Cstall
i compose the interval i. Note that Cexec

i and Cstall
i



TABLE I: Notation for performance modeling

Notation Description Notation Description

Nblock Number of thread blocks Nwarp
i Number of eligible warps in interval i

Nproc Number of streaming multiprocessors Dproc
i Additional delay due to processor contention in interval i

Ctotal Total number of cycles of executing a single layer Dmem
i Additional delay due to memory bandwidth contention in interval i

Ci Number of cycles of all warps in a thread block in interval i Dmshr
i Additional delay due to MSHR contention in interval i

Cexec
i Number of execution cycles for a warp in interval i Ddram

i Additional delay due to memory contention in interval i
Cstall

i Number of stall cycles for a warp in interval i Dbank
i Additional delay due to shared memory bank contention in interval i

LM Cache miss latency RM
i Number of memory instructions in interval i

LS Shared memory access latency RS
i Number of shared memory instructions in interval i
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Fig. 4: Cumulative distributions of three GPU performance
metrics when executing layers in an object detection network

assume that the warp does not experience any contention with
other warps or processors (i.e., SMs of NVIDIA GPUs).

We formulate the number of cycles in the i-th interval of
all warps in a thread block using the notation in Table I;

Ci = Cexec
i + Cstall

i +Dproc
i +Dmem

i

GPU schedulers assign each thread block to a specific proces-
sor to execute multiple warps in the thread block alternately.
Then, the total cycles for executing a single layer with Nblock

thread blocks on Nproc processor become:

Ctotal =
Nblock

Nproc

∑
i

Ci

Fig. 5 illustrates how the number of cycles changes from
the case of single-warp execution to the case of multi-warp
execution with additional delays.

1) Processor Contention Modeling: Processor contention
can occur when a processor has multiple active warps to
schedule. Based on the GTO scheduling policy, the processor
greedily executes a warp until the warp stalls. Then, the stalled
warp waits until all the other warps stall before issuing new
instructions. In such a case, if the number of stall cycles of
a warp is larger than the number of execution cycles of the
other warps, then there would be no additional delay due to
processor contention as shown in Fig. 5(b). On the other hand,
if the number of stall cycles of a warp is smaller than the
number of execution cycles of the other warps, the warp must
bear an additional delay until the SM reschedules it as Fig. 5(c)
shows.

Based on our second basic assumption, the processors can
hide the stall cycles Cstall

i by continuously re-scheduling the
ready warps. In other words, a warp should wait (Nwarp

i − 1)

Warp
the i-th interval
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Fig. 5: Interval-driven single-layer execution time modeling

warps until it is rescheduled in the worst case. In summary,
the worst-case additional delay due to processor contention
becomes:

Dproc
i = (Nwarp

i − 1) · Cexec
i − Cstall

i

2) Memory Contention Modeling: Memory contention can
occur when multiple processors access to DRAM or multiple
threads access the same shared memory bank simultaneously.
In the case, the additional delay is:

Dmem
i = max

{
Dmshr

i +Ddram
i , Dbank

i

}
(i) MSHR Contention: MSHR is a register that handles a
cache miss with the information on the cache miss such as
memory address. MSHR contention can cause additional delay
because the number of MSHRs is limited. Based on the MSHR
contention model of the prior work [35], we simplify the
model as:

Dmshr
i = LM ·

(⌈
RM

i

NUM MSHR

⌉
− 1

)
< LM · RM

i

NUM MSHR

considering the worst-case MSHR contention where
NUM MSHR is the number of MSHRs.



(ii) DRAM Bandwidth Contention: When multiple proces-
sors access the off-chip DRAM simultaneously, the DRAM
bandwidth limits the processing of the memory requests. Sim-
ilarly, we simplify the existing DRAM contention model [35]
as:

Ddram
i = CORE FREQ · CACHE LINE

MEM BAND
· R

M
i

2

considering the worst-case bandwidth contention (i.e., the
DRAM utilization is very high) where CORE FREQ is the core
frequency, CACHE LINE is the cache line size, and MEM BAND

is the DRAM bandwidth.
(iii) Shared Memory Bank Contention: Shared memory is
an on-chip scratchpad memory space which the threads in the
same thread block can share. To maximize the throughput,
each processor has the shared memory with multiple shared
memory banks so that all of the threads in a warp can con-
currently access different banks. In such a case, the additional
delay for accessing the shared memory banks of the shared
memory (Dbank

i ) is simply zero as no bank conflicts occur.
However, when the threads happen to access the same

bank, a bank conflict can occur and the accesses get served
in a serialized manner. In the worst case where all threads
access to the same shared memory bank, a thread should wait
for
(
RS

i − 1
)

before obtaining an access to the bank. Then,
the worst-case additional delay due to shared memory bank
contention is:

Dbank
i = LS ·

(
RS

i − 1
)

Note that we subtract the shared memory access latency of
a request when calculating its additional delay; the latency is
already counted as the stall cycles (Cstall

i ).
In summary, the number of total cycles for executing a

single layer becomes:

Ctotal =
Nblock

Nproc

∑
i

Ci

=
Nblock

Nproc

∑
i

{
Cexec

i + Cstall
i +Dproc

i +Dmem
i

}
=
Nblock

Nproc

∑
i

{Nwarp
i · Cexec

i }+ Nblock

Nproc

∑
i

Dmem
i

Here, our performance model can accurately predict the
execution latency of each layer while a GPU runs other
applications. Since GPUs support spatial multitasking by
distributing SMs to different applications, accurately pre-
dicting the execution latency on such multi-tenant scenarios
requires accurate modeling of the per-SM behaviors. Our
method achieves high per-SM modeling accuracy by using
the concept of intervals, and models the DRAM bandwidth
consumption shared between DNNs. Therefore, using the two
highly-accurate models, our performance model can easily be
extended to cover multi-tenant scenarios as well.

C. WCET Analysis

Based on the performance modeling, this work designs
the WCET analysis methodology for deep neural networks

TABLE II: Profiling events and metrics for WCET analysis

Term Event Description

Ctotal elapsed cycles pm Elapsed clocks for a kernel

Nblock
Nproc

∑
i N

warp
i · Cexec

i active cycles pm
Number of cycles where
a multiprocessor has at least
one active warp

Term Metric Description

Nblock

∑
i(R

M
i + RS

i ) ldst executed
Number of executed local,
global, shared, and texture
memory load and store insts

Nblock

∑
i R

M
i

global load requests Number of global load requests
global store requests Number of global store requests

on GPUs. To obtain the worst-case execution time from the
performance model, we should determine the unknown param-
eters in the performance model. Since the full specifications
of GPU architectures are not open to the public, we find the
parameters through linear regression based on the profiling
results of layers with different configurations. Table II lists
the events and metrics of the NVIDIA profiling tool [34] that
we use in the evaluation.

Assumption 1: The total execution cycles have a linear
relation with the number of computation, load, and store
instructions:

Nblock

∑
i

{Nwarp
i · Cexec

i } = αNcomp+βNload+γNstore+δ

where Ncomp, Nload, and Nstore are the number of computa-
tion, load, and store instructions, respectively.

Assumption 2: The total memory requests have a linear
relation with the number of load and store instructions:

Nblock

∑
i

RM
i = αNM

load + βNM
store + γ

where NM
load and NM

store are the number of global load and
store instructions, respectively.

Assumption 3: The total shared memory requests have a
linear relation with the number of shared load and store
instructions:

Nblock

∑
i

RS
i = αNS

load + βNS
store + γ

where NS
load and NS

store are the number of shared load and
store instructions, respectively.

For the other unknown parameters (i.e., LM and LS), we
estimate the worst-case value of each parameter referring to
the architectural analysis in previous work [36], [37] and the
profiling results of different layers from the NVIDIA profiling
tool [34] such as shared memory throughput and DRAM
throughput.

D. Extending to End-to-End Network

End-to-end networks include pre-processing or post-
processing computations besides layer executions, but the pre-
processing and post-processing time makes a small percentage
of the end-to-end network latency. Therefore, we use a simple
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Fig. 6: Conceptual diagrams for the new operators of multi-
path neural networks

regression model to stochastically estimate the worst-case pre-
processing and post-processing time between layers. Finally,
we can estimate the end-to-end network latency by summing
the worst-case execution time of the layers in a path using our
WCET analysis method in and the pre-processing and post-
processing time between the layers.

V. MULTI-PATH OBJECT DETECTION NETWORK

A. Network Design

To make neural networks aware of dynamic time constraints
themselves, this work introduces three new operators: skip,
switch, and dynamic generate proposals. Fig. 6 illustrates the
three operators with their inputs and outputs. First, a skip
operator (Fig. 6(a)) contains a single subnet (a set of layers)
and decides whether to run the subnet or not according to the
relative deadline and skip threshold. Second, a switch operator
can contain multiple subnets and (Fig. 6(b)) selects one of the
subnets to run according to the relative deadline and switch
thresholds for the subnets. Third, a dynamic generate proposals
operator (Fig. 6(c)) decides the number of region proposals to
pass to the HEAD phase according to the relative deadline
and proposal threshold. Section V-B will describe how the
path decision model determines the threshold values of each
operator.

Using the three operators, our system constructs a multi-path
object detection network on top of existing object detection
networks [3], [4]. The existing object detection networks
provide various design spaces for configuring the networks.
First, the networks can have a different number of layers in the
CONV phase. Second, the networks can generate a different
number of region proposals. Third, the networks can have
a different number of convolutional blocks with a different
number of hidden channels in the HEAD phase which affects
the classification accuracy.

Exploring the three network design spaces, this work de-
signs a multi-path object detection network that can change its
path dynamically. First of all, the system inserts skip operators
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Fig. 7: Applying the three operators in Fig. 6 to an object
detection network

into the CONV phase, which is normally very deep as shown
in Fig. 1(a). Therefore, skip operators are more suitable than
switch operators for the CONV phase in terms of memory
usage because switch operators require to maintain individual
weight matrices for each subnet.

For the CONV phase, this work regards ResNet [7], one
of the most common backbone networks for object detection
networks. ResNet consists of multiple residual stages, and each
residual stage contains identical residual blocks. Since ResNet
keeps the same input dimension in the same stage, ResNet
facilitates applying skip operators without extra overhead to
the original network. For other convolutional neural networks
such as VGG [38], adding skip operators may require extra
layers to match output and input dimensions. Therefore, those
networks are less suitable for multi-path object detection
networks. Fig. 7(a) shows how the system adds multiple skip
operators in the CONV phase.

Next, this work extends the RPN phase to dynamically
change the number of region proposals on demand by replac-
ing the original generate proposal operator with the dynamic
generate proposal operator. The dynamic generate proposals
operator allows to dynamically change the number of region
proposals, which determines the batch size of inputs in the
HEAD phase. The path decision model gives a threshold
value for the dynamic generate proposals operator to find the
appropriate number of region proposals.

Finally, the system generates multiple convolutional subnets
for the HEAD phase. The HEAD phase generally contains
a much shallower convolutional network than the CONV
phase. Thus, maintaining multiple subnets is acceptable for
the HEAD phase. Moreover, the HEAD phase includes fully-
connected layers that determine the final prediction result
of the object detection network. Then, sharing the fully-
connected layers among different subnets can contaminate
the output prediction result from different execution paths.
Therefore, the system creates multiple subnets and configures
each subnet with a different number of convolutional blocks
and hidden layer dimensions. Fig. 7(b) shows how the system
adds a switch operator in the HEAD phase.

The system configures multi-path networks based on the



TABLE III: Network configuration parameters

Parameter Description

nRS The number of residual stages in the CONV phase
nRB
i The number of residual blocks in the residual stage i

nP
max The maximum number of region proposals

nP
min The minimum number of region proposals

nSN The number of subnets in the HEAD phase
nCB
j The number of convolutional blocks in the j-th subnet

nHC
j The number of hidden channels in the j-th subnet

configurable parameters in the existing object detection sys-
tem [39] to satisfy the following two constraints:

1) Deadline constraint: The maximum execution time of
a multi-path network (tTmax) should be less than or equal
to the maximum relative deadline (Dmax), i.e.,

tTmax ≤ Dmax

2) Memory constraint: The total memory necessary for
a multi-path network should be less than or equal to the
total memory of the target platform (Mmax), i.e.,

n∑
i=1

Mi ≤Mmax

where n is the number of different layers in the network
and Mi is the amount of memory that each layer
requires.

To obtain a multi-path network model that satisfies both
the deadline constraint and the memory constraint, the system
starts from a minimal object detection network and gradually
extends the network. To guarantee the minimum desirable
accuracy, the system preserves several necessary network
layers such as the first few layers in ResNet for the multi-
path object detection networks. Then, the system gradually
inserts residual or convolutional blocks to the networks until
the parameters violate one of the constraints referring to the
existing object detection networks.

The system automatically constructs the overall network
structure following the design policies in a way to reduce
accuracy loss. First, the system adds skip operators with
convolutional blocks in the CONV phase imitating the original
ResNet structures (i.e., ResNet-50 and ResNet-101). Then,
the system inserts a switch operator with extra subnets in
the HEAD phase after the CONV phase becomes as deep
as ResNet-101, because too deep residual networks may not
obtain a good performance if a training dataset is not large
enough. If free memory space is still available, the system
additionally adds smaller subnets to the switch operator.

B. Path Decision Model

With the network structure, the path decision model deter-
mines how each operator should act according to the remaining
time until the deadline. Each operator checks the elapsed
time (te) from when the inference task starts, and makes

an appropriate decision to meet the deadline (D) eventually.
Note that each operator tracks the real-time value of te, then
each operator observes different values of te along with the
execution of the object detection network.

Before introducing a path decision model, we first formulate
the total execution time of a multi-path network as

tT = tTPRE + tTCONV + tTRPN + tTHEAD

where tTPRE , tTCONV , tTRPN and tTHEAD indicate the execution
time of each phase in the object detection network (Fig. 1(a)).
Since tTPRE and tTRPN change little with different network
configurations as shown in Fig. 1(b), we assume tTPRE and
tTRPN are constant. Then, we can formulate tTCONV and
tTHEAD as:

tTCONV ≤
nRS∑
i=1

{
nRB
i · tRB

i

}
tTHEAD ≤ max

{
tSN
j (nPmax)

}
j∈[1,nSN ]

using the network configuration parameters in Table III, where
tRB
i denotes the execution time of a residual block in the

residual stage i and tSN
j (n) denotes the execution time of

the subnet j in the HEAD phase when the number of region
proposals is n.

First, the path decision model determines when each skip
operator in the CONV phase should skip residual blocks. If the
minimum execution time of the rest of the network exceeds
the remaining time until the deadline, the skip operator decides
to skip its residual blocks. Then, the threshold τ of the skip
operator in the residual stage k becomes:

τ = nRS
k ·tRS

k +tTRPN+min
{
tSN
j

(
nPmin

)}
j∈[1,nSN ]

≤ D−te

Second, the path decision model finds an appropriate num-
ber of region proposals (nP ) for the dynamic region proposals.
Since the number of region proposals is one of the important
factors that affect the detection accuracy, the network should
try to maximize the number of region proposals assuming that
in the HEAD phase the network would run the smallest subnet.
Then, the threshold τ of the dynamic generate region proposals
becomes:

τ = min
{
tSN
j

(
nPmax

)}
j∈[1,nSN ]

With τ , the dynamic generate proposals operator determines
the appropriate number of proposals as:

nP = min

{
max

{⌊
nPmax ·

D − te
τ

⌋
, nPmin

}
, nPmax

}
Finally, the path decision model chooses a single subnet to

run among the subnets of the switch operator in the HEAD
phase. The decision model chooses the subnet with the largest
execution time tSN

j such that tSN
j is less than or equal to the

remaining time until the deadline (i.e. tSN
j ≤ D − te).
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Fig. 9: Average precision of the baseline network and the multi-path network
for each target relative deadline

TABLE IV: Maximum AP of training strategies

Strategy NS-NS RS-NS NS-RS RS-RS

Maximum AP 19.87 23.55 29.94 29.84

C. Training Multi-path Neural Networks

This work tries to find an efficient strategy to train multi-
path neural networks empirically. Unlike static neural net-
works where gradients always propagate to all paths, multi-
path neural networks have multiple possible paths to which
gradients can propagate. Depending on the network structures
(i.e. the number of skip and switch operators), the number
of possible paths can be huge. Therefore, finding an efficient
training strategy is one of the challenges in using multi-path
neural networks.

We design different training strategies for the skip and
switch operators and train the same multi-path neural network
with the following four training strategies to find the best:
• No Skipping - No Switching (NS-NS): runs the subnet

of each skip operator without skipping it and aggregates
the results from all subnets for each switch operator

• Random Skipping - No Switching (RS-NS): randomly
runs the subnet of each skip operator and aggregates the
results from all subnets of each switch operator

• No Skipping - Random Switching (NS-RS): runs the
subnet of each skip operator without skipping it and
randomly runs a single subnet for each switch operator

• Random Skipping - Random Switching (RS-RS): ran-
domly runs the subnet of each skip operator and randomly
runs a single subnet for each switch operator

Note that when selecting an execution path randomly, multi-
path neural networks change their paths randomly per iteration
(a pair of forward and backward passes). In other words, multi-
path neural networks stick to a specific path within an iteration
to prevent gradients from propagating through a wrong path.

Table IV shows the maximum AP when applying each
training strategy. We train an empty multi-path network with
the Cityscapes dataset [20] and measure the maximum AP by
executing the longest path of the multi-path network. Among
the four training strategies, NS-RS and RS-RS obtain the better
accuracy than NS-NS and RS-NS. The result implies whether

to switch randomly or not gives a significant impact on the
accuracy. We suppose this accuracy loss might come from the
vanishing gradient problem by the aggregation operator. On
the other hand, whether to skip randomly or not incurs mean-
ingful accuracy change only with the no switching strategy.

VI. EVALUATION

To evaluate our real-time object detection system, this work
implements a prototype system on top of Caffe2 deep learning
framework and Detectron object detection system [39]. We
extend Caffe2 to support the three operators of the multi-path
neural networks shown in Fig. 6, and Detectron to create the
multi-path neural networks and the timer operators to check
the elapsed time before executing each operator. We use a
Faster R-CNN network with ResNet-101 and FPN employing
group normalization layers as a baseline network. On top of
the baseline network, we build a multi-path network by insert-
ing five skip operators and one switch operator to the baseline
network. Among 25 potential positions for skip operators, we
choose five positions considering meaningful inter-skip latency
to adapt to time-varying deadlines and skipping overheads.

To train and test the networks, we use two widely used
driving datasets: Cityscapes [20] and BDD100K [21]. For the
Cityscapes dataset, we use the fine training set and employ
the compact set of categories as done in prior work [4].
Table V summarizes the characteristics of the datasets and
the training parameters we used. Note that we force the same
training iterations in Table V for both the baseline network
and the multi-path network. We utilize an NVIDIA Titan Xp
GPU as the target platform of our object detection system.

TABLE V: Datasets and training parameters

Information Cityscapes (fine) [20] BDD100K [21]

Number of train images 2,975 70,000
Number of validation images 500 10,000

Learning rate 0.0025 0.005
Iteration 196,000 180,000
Number of GPUs 1 2
Batch size 1 4
Image scale [700, 950] [540, 720]



TABLE VI: Configuration of convolutional and group normalization layers

# Convolutional Layer Group Normalization Layer
Channelin Heightin Widthin Channelout Kernel Stride Padding Channelin Heightin Widthin Group Size

1 64 136 240 256 1 1 0 64 272 480 32
2 256 136 240 128 1 1 0 64 136 240 32
3 128 68 120 512 1 1 0 256 136 240 32
4 256 136 240 512 1 2 0 128 136 240 32
5 512 68 120 128 1 1 0 128 68 120 32
6 512 68 120 256 1 1 0 512 68 120 32
7 256 34 60 1024 1 1 0 256 68 120 32
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Fig. 10: Single-layer execution time

A. Real-time Object Detection Using Multi-path Networks

In this experiment, we evaluate whether our real-time ob-
ject detection system can satisfy dynamic time constraints.
Specifically, the experiment examines whether the multi-path
neural network can conservatively adapt to the dynamic time
constraints using the WCET model. In addition, the experi-
ment examines an execution of the multi-path neural network
without memory contention modeling; the memory contention-
oblivious latency estimation model only employs the linear
relation of Assumption 1 in our WCET analysis when selecting
its execution path. The experiment assumes a driving scenario
where the speed of the vehicle dynamically changes over time.
The allowed inference time (i.e., the time limit for real-time
object detection systems) changes with respect to the vehicle’s
velocity.

The experimental result clearly indicates that our system
using the WCET model fully satisfies the dynamic time con-
straints. On the other hand, the memory contention-oblivious
model-based execution fails to ensure real-time guarantees
violating the dynamic time constraints. Fig. 8 shows the
relative deadlines over time, and the multi-path neural network
execution latency either without or with memory contention
modeling in our WCET model. Our system is fully real-
time aware as the execution of the multi-path neural network
using our WCET model always finishes before the deadlines.
However, without memory contention modeling which helps
to find an appropriate safety margin, the multi-path neural
network often fails to meet the deadlines.

We also evaluate the changes in the inference accuracy of
the multi-path neural network as the time limit changes. The
evaluation results shown in Fig. 9 indicate that our multi-
path neural network incur little accuracy losses even when
the time limit becomes tight; our system incurs less than 3.1
and 1.1 points of accuracy losses for the validation sets of

Cityscapes and BDD100K, respectively. For the multi-path
network, we employ both our WCET models with and with-
out memory contention modeling. The memory contention-
oblivious latency estimation model incurs similar accuracy
losses; however, our entire WCET model not only incurs little
accuracy losses, but also ensures real-time guarantees.

In summary, our multi-path neural networks with the WCET
model enables real-time object detection with little accuracy
losses. The memory contention-oblivious model, however,
fails to fully satisfy the dynamic time constraints because it
estimates the inference latency too tightly.

B. Accurate Single-layer WCET Analysis

We now evaluate the accuracy of our single-layer WCET
analysis. Achieving accurate single-layer WCET predictions
is essential as our system relies on the single-layer WCET
analysis to ensure real-time guarantees. For this experiment,
we first construct two single-layer neural networks, each with
convolutional and group normalization layers on top of Caffe2.
Then, we obtain the single-layer WCET models for the two
types of layers by profiling the two neural networks with
various configurations (e.g., input size). After that, the single-
layer WCET models are validated against real hardware plat-
forms and compared with the WCET models without memory
contention modeling. To evaluate the platform portability of
the WCET models, we employ an NVIDIA GTX 1050 Ti GPU
and Jetson TX2 as additional target platforms.

The experimental results show that our single-layer WCET
models accurately predict the single-layer execution latency;
the maximum absolute errors for convolutional layers are
only 0.06 ms, 0.38 ms, and 2.68 ms for Titan Xp, GTX
1050 Ti, and Jetson TX2, respectively. Fig. 10 shows the
actual and estimated execution time of the two types of layers
on Titan Xp, GTX 1050 Ti, and Jetson TX2, respectively.
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The error bars indicate the minimum and the maximum
execution times from five profiling runs. On average, the
WCET model for convolutional layers obtains 27%, 35%,
and 85% relative errors on Titan Xp, GTX 1050 Ti, and
Jetson TX2 over the maximum execution time, respectively.
For the group normalization layers, the worst-case execution
time model obtains 81%, 44%, and 223% relative errors on
Titan Xp, GTX 1050 Ti, and Jetson TX2, respectively. The
memory contention-oblivious model tends to incur smaller
prediction errors; however, it does not consider WCET and
cannot guarantee the WCET in a number of cases. Note that
the errors from our WCET analysis will not get accumulated
through the execution of the multi-path neural network; each
operator dynamically tracks the actual elapsed time instead of
the WCET.

We also evaluate our WCET model in multi-tenant scenarios
by running another GPU kernel in parallel while executing a
layer. Fig. 11 shows the actual and estimated execution time
on Titan Xp in one- and two-tenant scenarios. In Fig. 11, GPU
utilization indicates the average percentage of multiprocessors
used by the other tenant. We set a safety margin for the mem-
ory contention-oblivious model as the maximum relative error
between the actual and estimated execution time in the exper-
iment (45%), not to violate time constraints at least for the
evaluated results. On average, the WCET model obtains 51%
and 3% less errors compared with the memory contention-
oblivious model with a safety margin for convolutional and
group normalization layers, respectively. The result shows that
our WCET model estimates the worst-case execution time with
smaller errors in multi-tenant scenarios, whereas the memory
contention-oblivious model might not be able to estimate the
execution time properly even with the safety margin.

VII. RELATED WORK

A. Real-Time DNN Frameworks

Some prior work [8]–[10] aims to satisfy the varying time
constraints on DNNs using approximation and DVFS mech-
anisms. For example, ApNet [8] treats the layers of a DNN,
instead of the entire DNN, as schedulable tasks and applies
per-layer approximation to meet the target deadline. When
selecting the approximation strategy to use for each layer,
ApNet examines how the resource utilization of the target
device (e.g., GPUs) changes with respect to the approximation
mechanisms. As another example, PredJoule [9], a timing-
predictable energy optimization framework for DNNs, exploits
the fact that the energy usage patterns differ among different
layers. By considering the correlation between power and
performance characteristics of the layers into an account, Pred-
Joule selects the optimal DVFS strategy for executing DNNs
without violating the target time constraint. DeepRT [10]
also exploits DVFS to satisfy the target time constraints, but
focuses on executing DNNs on mobile devices. As mobile
devices have limited amounts of resources, DeepRT utilizes
both DVFS and compression; it dynamically adjusts the CPU
and GPU clock frequencies, and employs dynamic model
compression using singular value decomposition.

Our work shares the common goal of satisfying the varying
time constraints of DNN executions with the prior work;
however, our multi-path networks achieve higher applicability
by requiring neither accuracy-affecting techniques (e.g., per-
layer approximation, compression) nor low-level system-wide
controls (e.g., DVFS). Instead, the multi-path networks simply
extend the existing DNNs with multiple execution paths hav-
ing different execution latencies, and utilize the skip/switch
operators to dynamically change a DNN’s execution path
during run-time with respect to the remaining time limit.

B. Reducing the DNN Execution Latency

To reduce the execution latency of DNNs on resource-
constrained devices, some existing work proposes dynamic
resource-aware DNN systems which reduce the computa-
tional overheads of DNNs. First, some frameworks reduce the
computational overheads of DNNs by eliminating near-zero
weights in convolutional and fully-connected layers [40]–[42].
By removing the near-zero weights, the number of multiply-
accumulate operations reduces and the frameworks can achieve
lower execution latency. Second, other frameworks propose to
employ filter pruning which reduces the computational over-
heads by eliminating some filters of convolutional layers [11],
[12]. For example, NestDNN [11] allows DNNs to expand and
shrink the size of the filters in convolutional layers according
to the dynamic availability of hardware resources. Third, the
other frameworks fine-tune a given DNN with respect to the
available hardware resources [13]–[15]. As an example, Ne-
tAdapt [13] fine-tunes a DNN to a target platform by applying
different levels of filter pruning to the DNN’s convolutional
and fully-connected layers, and by estimating the resource
consumption of the reconfigured DNNs. Among the fine-tuned



DNNs which meet the resource budget, NetAdapt selects the
most-accurate one as the optimal DNN for the target platform.

Reducing the execution latency of DNNs can help the
frameworks meet deadlines on real-time environments; how-
ever, the frameworks cannot adapt to varying time constraints,
and focus on reducing the computational overheads of a DNN
by eliminating the DNN’s operations (e.g., filter pruning). On
the other hand, our multi-path networks not only adapt to the
varying time constraints using accurate performance modeling,
but also offer higher flexibility by allowing different paths to
consist of different series of layers. For example, our multi-
path networks can provide subnets where different levels of
filter pruning have been applied, or subnets which consist of
completely different series of layers as alternative execution
paths. Furthermore, layers can be skipped on the multi-path
networks whereas the existing frameworks often do not.

C. GPU Performance Modeling

Modeling the performance of GPUs has been an active re-
search topic as accurate performance prediction brings several
benefits (e.g., performance bottleneck identification and faster
simulations). Hong and Kim [43] introduce the concept of
Memory Warp Parallelism (MWP) to estimate the number
of parallel memory requests to predict the execution latency.
Using the estimated MWP of a GPU kernel, their model
estimates the costs of memory accesses to derive the total
execution latency of the kernel. Baghsorkhi et al. [44] propose
to abstract a GPU kernel as a Work Flow Graph (WFG)
to estimate the kernel’s execution latency. The nodes of the
WFG represent the operations (e.g., computation, memory,
synchronization), and the weights of the WFG’s edges are the
average numbers of cycles required to execute their source
nodes. Zhang and Owens [45] employ a microbenchmark-
driven approach to construct a GPU performance model.
Instead of building an analytical model first and then verifying
the model using microbenchmarks, they build a throughput
model by profiling the microbenchmarks on the target GPU.
Huang et al. [35] present an interval analysis-based perfor-
mance model for GPUs considering how hardware components
operate. The model chooses a representative warp by clustering
all profiling results of warps to estimate the performance of
a target program. Using a functional simulator, the model
consumes shorter analysis time than other models based on
a cycle-accurate simulator. More recently, Wu et al. [46]
utilize machine learning to predict a GPU kernel’s execution
latency. They first train a neural network which predicts the
performance scaling behavior of a GPU kernel. Then, to
estimate the latency and power of a kernel on the target GPU,
they predict the kernel’s performance scaling behavior using
the neural network and scale the kernel’s performance on a
base hardware configuration.

Unlike the prior work on GPU performance modeling, this
work focuses on the WCET analysis of deep neural networks
to guarantee deadline. Our performance modeling is based on
the work by Huang et al. [35] by employing their interval
analysis technique; however, by specializing in modeling the

performance of DNNs and extending the model with the worst-
case resource contention modeling, our method simplifies and
extends the prior work for accurate performance modeling of
DNN executions on GPUs.

D. Worst-Case Execution Time Analysis for GPUs

Worst-Case Execution Time (WCET) analyses enable real-
time scheduling of GPU programs by helping them meet
deadlines even in the worst-case execution scenarios. In terms
of the WCET analyses for GPUs, Hirvisalo [47] conducts
static timing analysis of GPU kernels with abstract Coop-
erative Thread Array (CTA) simulation. Hirvisalo calculates
the WCET by cumulating instruction execution and memory
stall times of the abstract warp with respect to thread diver-
gence, memory latencies and scheduling choices. Huangfu and
Zhang [31] propose a static WCET analysis method based
on a predictable scheduling policy (i.e., Greedy Then Round-
Robin scheduling). With the timing model for the scheduling
policy, they present a static analyzer that analyzes the assembly
codes of GPU programs and provides the WCET estimations
for the GPU programs. Betts and Donaldson [30] introduce a
hybrid WCET analysis which combines dynamic profiling and
static analysis, extending an existing hybrid WCET analysis
for sequential programs. First, they slice program traces into
a set of Warp Specific Traces (WSTs) generated by a specific
warp on a particular multiprocessor. To provide warp-specific
WCET estimate with the traces, they propose two ways to
further analyze them: a pure dynamic technique and a hybrid
technique. The pure dynamic technique dynamically infers the
worst-case release jitter of the final warp. The hybrid technique
builds a model of how warps arrive and computes the worst-
case release jitter of the final warp. Then, based on the worst-
case release jitter, they estimate the WCET of a GPU program.

The existing WCET analyses require the source code of
their target applications; however, as GPU vendors do not fully
disclose the details of their GPUs and optimized DNN libraries
(e.g., cuDNN), it is difficult for real-time DNN-based object
detection systems to employ the existing WCET analyses.
Open-source frameworks such as Caffe and TensorFlow also
utilize the proprietary libraries as well. Therefore, we utilized
the nvprof profiling tool to obtain the information (e.g., cycle
counts, memory instruction counts) necessary for estimating
the disclosed/unknown parameters instead.

VIII. CONCLUSION

Real-time object detection systems need to satisfy
environment-varying time constraints; however, the existing
object detection systems which employ DNNs to achieve
high accuracy fail to satisfy the real-time requirements. This
work proposes a novel real-time object detection system that
employs multi-path neural networks and a WCET performance
model for the neural networks. The networks can dynamically
select their execution paths to meet the varying time con-
straints. Our detailed experiments using widely used driving
datasets clearly show that the system successfully satisfies any
time limit while maintaining high accuracy.
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