
Sharing-aware Data Acquisition Scheduling for
Multiple Rules in the IoT

Seonyeong Heo
POSTECH

Pohang, Republic of Korea
heosy@postech.ac.kr

Seungbin Song
Yonsei University

Seoul, Republic of Korea
seungbin@yonsei.ac.kr

Bongjun Kim
POSTECH

Pohang, Republic of Korea
bong90@postech.ac.kr

Hanjun Kim
Yonsei University

Seoul, Republic of Korea
hanjun@yonsei.ac.kr

Abstract—In the Internet-of-Things (IoT) environments, users
define event-condition-action (ECA) rules, and expect IoT frame-
works to evaluate conditions and take appropriate actions within
a certain time limit after an event occurs. To evaluate the
conditions with fresh data items, the frameworks acquire re-
quired data from IoT sensors. Since the data acquisition causes
battery consumption of sensors, the frameworks should minimize
the number of the data acquisition while keeping the sensor
data fresh until finishing the condition evaluation. However,
existing data acquisition schedulers inefficiently acquire sensor
data because the schedulers assume each ECA rule in a program
is independent of each other although different rules may share
some sensing data from the same sensors. This work proposes
an efficient sharing-aware data acquisition scheduling algorithm
that reduces unnecessary data acquisition by sharing sensor
data commonly used in different rules while satisfying time
constraints. To evaluate the proposed scheduling algorithm, this
work deploys 19 devices in an office, collects values of 26 different
sensors for 144 hours, and simulates the proposed algorithm and
a baseline algorithm. Compared to the baseline algorithm, the
proposed algorithm reduces communication count and deadline
miss ratio by 31.9% and 50.2% respectively.

I. INTRODUCTION

Popular Internet-of-Things (IoT) frameworks such as Smart-
Things [1] and IFTTT [2] allow users to define event-
condition-action (ECA) rules with their IoT devices that
specify which action should be taken in a certain condition
when an event occurs. Fig. 1 illustrates a smart office example.
In the example, a user constructs a smart office environment
based on rules like “When motion is detected (event), if the
illuminance intensity is less than 50 lux (condition), then turn
on the light (action)”. To make the rules materialize, an IoT
server monitors events, acquires data from sensors, evaluates
the conditions, and sends commands to actuating devices.

According to the rules, a user expects the IoT server to
take actions within a time limit after an event occurs. When
the IoT server detects an event occurrence, the server should
evaluate conditions of the rules associated with the event, and
decide whether to take appropriate actions or not. Since the
conditions compare data items from IoT sensors and threshold
values, the server should acquire fresh data items from the
sensors to reflect the real-time user environment. For example,
the condition of Rule 1 in Fig. 1 requires the humidity value
from the humidity sensor and the illuminance value from
the light sensor. When motion is detected, the server should

Event Condition Action

Motion Sensor

Detect
an event

Motion
is

detected

IoT Server
Take actionsEvaluate conditions

Temperature
Humidity

Illuminance

Rules

Bulb.on

Blind.open

AC.on

Humidity > 80 || Illuminance < 400

Illuminance < 50

Temperature > 25 && Humidity > 60

!

#

1

3

2

Fig. 1: Smart office example

request fresh humidity and illuminance values to the humidity
and light sensors, and evaluate the condition. Here, although
prefetching the data items before the event occurrence can
reduce the data acquisition overheads and response time, the
prefetching is infeasible especially for sporadic events such as
human motion, because it is difficult to predict when the events
will occur. Moreover, since IoT sensors drain their batteries to
measure the user environment and send the sensing data, the
number of the data requests to sensors should be minimized
to save sensor batteries. Therefore, efficient data acquisition
scheduling is important to give a prompt response to users
with fresh data while minimizing the number of data requests.

To reduce the data acquisition overheads, data acquisition
scheduling needs to be aware of data item sharing among
different rules. Since users have a finite number of IoT devices
and write rules using the data items of the devices, different
rules may share the same data item from the same device.
In other words, different rules can be correlative in terms of
data items they use. In the smart office example in Fig. 1,
Rule 1 and Rule 2 share the illuminance value, and Rule
1 and Rule 3 share the humidity value. In these cases, the
IoT server does not need to acquire the illuminance and
humidity values twice to evaluate two different conditions.
Therefore, considering sharing data items among different
rules in data acquisition scheduling can reduce unnecessary
data acquisitions and enable prompt response to an event.

Previous work [3]–[7] has studied data acquisition schedul-

3.3

3.35

3.4

3.45

3.5

0 10 20 30 40 50 60

W
at

t

Elapsed Time (s)

(a) Period = 1s

3.3

3.35

3.4

3.45

3.5

0 10 20 30 40 50 60

W
at

t

Elapsed Time (s)

(b) Period = 100ms

3.3

3.35

3.4

3.45

3.5

0 10 20 30 40 50 60

W
at

t

Elapsed Time (s)

(c) Period = 10ms

Fig. 2: Energy consumption with different data acquisition
periods

ing in decision-making problems and proposes scheduling
strategies to find an optimal acquisition order of data items.
However, they assume each decision task (condition evaluation
in the context of this work) is independent of each other. None
of them primarily consider data sharing among decision tasks,
causing unnecessary communication cost for acquiring shared
data items. Although Kim et al. [5] propose a heuristic to skip
acquiring a shared data item that is already acquired by the
other task, the scheduling strategy itself is not aware of data
item sharing, so the strategy does not actively reduce duplicate
data acquisitions for the shared data items. Therefore, the
proposed solutions cannot successfully increase data sharing
when different rules share the same data items.

This work proposes an efficient sharing-aware data acquisi-
tion scheduling algorithm for multiple rules, S-tLVF (Sharing-
aware tree-based Least Volatile item First), that reflects data
item sharing in the scheduling. Basically, S-tLVF schedules
data acquisitions for each rule in parallel and adjusts the
original schedule to avoid unnecessary data acquisitions. For
a single rule, this work introduces the tLVF algorithm that
schedules data acquisitions by calculating the expected costs
of acquiring data items with considering the nested structure of
a rule condition, because the state-of-the-art data acquisition
scheduling algorithm [3] only supports a restricted form of a
rule condition. S-tLVF schedules data acquisitions for each
rule using tLVF, and tries to delay reacquiring (already)
fresh data items. This work also proposes a predictive S-
tLVF algorithm that delays data acquisition schedule to avoid
unnecessary data acquisition and enables data sharing among
different rules in the future.

This work evaluates the proposed scheduling algorithms by
deploying 19 IoT sensors and devices in an office room and
collecting 26 different kinds of data items for 144 hours. This
work generates two test cases: 1) 10 events and 200 rules with
all the 26 data items (a large test case) and 2) 10 events and
200 rules with only 10 of the 26 data items (a small test case).
The work simulates the proposed algorithms and a baseline
algorithm [3]. Compared to the baseline algorithm, S-tLVF
reduces data acquisition counts and deadline miss ratio by
31.9% and 50.2% for the large case and by 34.7% and 48.3%
for the small case, respectively. S-tLVF obtains the better
performance with the small case because rules are more likely
to share the same data items. The evaluation results show that
S-tLVF successfully reduces the number of unnecessary data
acquisitions and enables more rules to meet their deadlines.

The contributions of this paper are:
• Efficient sharing-aware data acquisition scheduling algo-

rithm (S-tLVF) for multiple rules in the IoT environments
• Predictive sharing-aware data acquisition scheduling (PS-

tLVF) that schedules data acquisitions to realize sharing
opportunities in the future

• Evaluation with real-world IoT data, collected on the
smart office testbed

II. BACKGROUND & MOTIVATION

A. Data Acquisition in IoT Frameworks

IoT frameworks such as SmartThings [1], Microsoft
Flow [8] and IFTTT [2] allow users to import existing rules
and write custom rules that follow event-condition-action
ways. When an event occurs, the framework server acquires a
set of data items from IoT devices in the user environments,
evaluates the conditions of the rules, and executes the actions
if the conditions are satisfied. For example, Fig. 1 illustrates
that a user installs three rules in an IoT framework. According
to Rule 1, when motion is detected, the server acquires the
humidity and illuminance values from IoT sensors, and opens
the blind if the room is humid or dark. Here, since acquiring
data items requires round trip communication between the
server and IoT devices, data acquisition scheduling is a crucial
key to quickly and efficiently evaluate the conditions.

Along with the quality of services, efficient data acquisition
can also enhance the energy efficiency of IoT devices. In
general, acquiring data items less times results in less energy
consumption. To demonstrate the correlation, this work mea-
sures the energy consumption of an Odroid C2 compute board
when a client requests a data item periodically. Fig. 2 shows
how the energy consumption changes as the data acquisition
period increases. The result implies that if the client requests
a data item more frequently, the energy consumption tends
to increase. Therefore, efficient data acquisition scheduling is
important to save the battery of IoT devices.

However, complex time constraints in the IoT pose chal-
lenges to find an efficient data acquisition scheduling strat-
egy. In data acquisition scheduling, IoT frameworks need
to consider four different aspects: deadlines of rules, early
termination of condition evaluation, freshness intervals of date
items, and data item sharing among rules.

First, each rule has its own deadline. Users expect IoT
frameworks to take appropriate actions within a certain time
limit after an event occurs [4], [5], [7], [9]. For example,
users may want the frameworks to turn on bulbs when they
enter a room according to Rule 2 in Fig. 1. If the action
is delayed, users have to unpleasantly turn on the bulbs on
their own. Therefore, the IoT frameworks should acquire data
items, evaluate the conditions, and take the actions within the
deadline.

Second, IoT frameworks can terminate condition evaluation
without acquiring all data items in rules (early termination
of condition evaluation). The IoT frameworks may acquire
all the data items in parallel at the same time to meet the

deadline. However, it causes unnecessary data acquisition and
energy consumption of IoT sensors because the frameworks
can evaluate a condition with a partial set of the data items.
For Rule 1 in Fig. 1, if the humidity value is larger than 80
or if the illuminance value is smaller than 400, the framework
can decide to open the blind without acquiring the other value.
Therefore, data acquisition scheduling needs to consider which
data item is more likely to terminate the condition evaluation
early to minimize unnecessary data acquisition.

Third, each data item has its own freshness (validity) inter-
val, a period in which the data item can remain valid. Since
IoT sensors measure user environments that are ever changing,
the sensor values are valid only within a certain period.
During the condition evaluation, if a data item becomes invalid
after its freshness interval, the IoT frameworks should acquire
the data item from the sensors again to refresh the sensor
value. Moreover, since some sensor values fluctuate more than
others, their freshness intervals are different. For example,
some sensor values such as temperatures and humidity slowly
change while the others like motion and illuminance may
quickly change over time. Then, the freshness intervals of
the former ones would be relatively larger than those of the
latter ones. Therefore, the IoT frameworks should reflect the
freshness intervals of sensors in data acquisition scheduling.

Finally, data acquisition scheduling should reflect data item
sharing among different rules. Since a limited number of IoT
devices engage in multiple rules in the user environment,
different rules are highly likely to share the same data items.
For example, in Fig. 1, both Rule 1 and Rule 2 use the
illuminance value, and both Rule 1 and Rule 3 use the
humidity value in their conditions. Therefore, the rules are
not independent but correlative.

To demonstrate that many real-world applications actually
share data items, this work analyzes 70 open-source Smart-
Things applications at SmartThings Community [10] that use
commodity IoT devices. This work collects all the rules
that subscribe to a single event or multiple events in the
applications, and then this work counts shared data items
among the rules. Here, to see the maximum possibility of data
sharing, this work assumes that the same type of data items
belong to one IoT device although actual applications may use
different devices for the same type of data items. The analysis
results show that most applications share some data items with
other applications. Among the 70 applications, 91% of the
applications share some data items with other applications,
and 61% of the applications share more than one data items.
Since different applications and rules can reuse the shared data
items, considering data sharing in data acquisition scheduling
can reduce unnecessary communications with IoT devices.

B. Limitation of Existing Scheduling Schemes

Previous work [3]–[7] investigates data acquisition schedul-
ing for decision-making problems. Hu et al. [3] find an
optimal data acquisition policy for a single rule, which chooses
a data item with the longest freshness interval first. Note
that this work refers the single-rule policy as LVF (Least

Temperature

Humidity

Rule 3

Illuminance

Rule 1Motion is detected

Rule 3
Data Acquisition
Schedule

Rule 1

Event

Freshness
Period

Humidity
Illuminance

Temperature

Humidity

(a) Suboptimal scheduling (LVF)

Temperature

Humidity

Rule 3

Illuminance

Rule 1Motion is detected

Rule 3
Data Acquisition
Schedule

Rule 1

Event

Freshness
Period

Humidity
Illuminance

Temperature

(b) Optimal scheduling

Fig. 3: Motivating timeline graphs

Volatile item First) instead of its original name (LDF; Least
Deadline First) to avoid confusion. Based on LVF, Hu et al.
propose a data acquisition scheduling algorithm for multiple
rules that reflects early termination of condition evaluation to
reduce unnecessary data acquisitions. The algorithm calculates
short-circuiting probabilities of each data item and gradually
modifies the LVF order.

Extending the previous work [3], Kim et al. [5] propose
EDEF-LVF (Earliest Deadline or Expiration First - Least
Volatile item First), an optimal data retrieval policy for multi-
ple rules. EDEF-LVF chooses a rule with the earliest deadline
and freshness expiration first. Then, it schedules to acquire
data items one by one for the chosen rule using the LVF policy.

However, existing data acquisition algorithms [3]–[7] have
limitations in scheduling real-world IoT applications. First, the
algorithms ignore data sharing among different rules and then
incur redundant data acquisitions. Since the algorithms assume
that rules are independent of each other, the algorithms may
not obtain the best performance when different rules share the
same data items. Second, the scheduling algorithms do not
fully reflect early termination of condition evaluation, which
can largely affect the communication efficiency. Although Hu
et al. [3] consider the short-circuiting probabilities of each data
item, they assume that each condition consists of a conjunction
of multiple sub-conditions restricting the semantics of rules.

Fig. 3 illustrates a motivating example that demonstrates
the need to consider data sharing among different rules. In
Fig. 3, Rule 1 and Rule 3 refer to Rule 1 and Rule 3 in Fig. 1.
Each horizontal bar indicates the data acquisition latency of a
data item, and each arrow under the horizontal bars indicates
the freshness interval of a data item. Assuming that none of
the data items (Temperature, Humidity, Illuminance) are
valid when motion is detected, the IoT framework should
acquire Temperature, Humidity, Illuminance to evaluate the
conditions of Rule 1 and Rule 3. Without considering the
correlations between Rule 1 and Rule 3, the suboptimal
scheduling, LVF, decides to acquire Humidity first for Rule
3 because the freshness interval of Humidity is longer than
the freshness interval of Illuminance. However, the optimal

IoT Server
Rule Table

Evaluation Status Board
Deadline Rule Data Items Result
1 19-05-25 22:22:33 1 humidity, illuminance true
2 19-05-25 22:23:43 2 illuminance -
3 19-05-25 22:24:30 3 temperature, humidity -
⋮ ⋮

Event Rules
1 motion.detected 1,2,3

2 temperature.
changed 4,5

⋮

Event Table
Event Condition Action
1 1 humidity > 80 || illuminance < 400 blind.open
2 1 illuminance < 50 bulb.on
3 1 temperature > 25 && humidity > 60 ac.on
⋮

Scheduling
Manager

Name Expiration Time Value
1 motion 19-05-25 22:19:23 0
2 humidity 19-05-25 22:20:00 90
⋮

Data Item Table

User

Data Acquisition Schedule

Event Handler Communication Manager

Name Acquisition Time
1 motion 19-05-25 22:19:05
2 humidity 19-05-25 22:19:50
⋮

Device Manager

installs

Fig. 4: The overall design of the IoT framework

scheduling is to acquire Illuminance first considering that
Rule 1 and Rule 3 can share the value.

Following the observations, considering data sharing among
different rules is important to reduce redundant data acquisi-
tions and response time of IoT rules. Although real-world IoT
applications do share the same data items, existing scheduling
schemes assume that rules are independent of each other.
Therefore, the schemes cannot always find optimal solutions.
To overcome their limitations, this work proposes efficient
data acquisition scheduling algorithms that consider data item
sharing among different rules.

III. OVERALL DESIGN OF THE IOT FRAMEWORK

This section describes the overall design of an IoT frame-
work that this work is based on. The IoT framework assumes
that a central IoT server integrates all IoT devices. The IoT
server consists of five major data structures: an event table,
a rule table, an evaluation status board, a data acquisition
schedule, and a data item table, and two major modules:
a device manager and a scheduling manager. Fig. 4 briefly
illustrates the overall framework.

The IoT framework allows users to install event-condition-
action rules that describe which action is required in a con-
dition when an event occurs. The syntax of rules can be
expressed in a context-free language as described in Fig. 5.
An event represents a notification from an IoT device. The
IoT device can push the notification to the server, or the server
can pull the device status and notice the event from the status
change. A condition of a rule is a binary expression that de-
termines when to take actions according to data items values.
Actions of a rule describe how actuator devices act in response
to the event. Note that unlike the existing frameworks, the

rule ::= WHEN event
IF conditions
THEN actions
WITH constraint

event ::= Device.event
conditions ::= (conditions && conditions)

::= (conditions || conditions)
::= condition

condition ::= v4 k

4 ::= < | <= | > | >= | == | !=
actions ::= actions; action

::= action
action ::= Device.operation()

constraint ::= TIME ≤ D

Fig. 5: The syntax of an event-condition-action rule. Here, v
is a data item from an IoT device, and k is a user-defined
threshold value.

framework allows users to specify a relative deadline of a
rule as a time constraint. If users do not specify any, the
framework sets a default value for the time constraint. When
the event occurs, the framework should evaluate the condition
by checking whether the condition is satisfied or not using
fresh data items within the deadline.

When a user installs a new rule, the server stores the rule
in the rule table. Each entry in the rule table is linked with an
event in the event table. Each entry in the event table contains
information about an event to subscribe and rules to trigger
when the event occurs. If a rule introduces a new event, then
the framework inserts a new entry into the event table and links
the entry with the rule. If a new rule subscribes to the existing
event, then the framework links the existing event entry with
the rule.

The device manager communicates with IoT devices to
acquire data items and detect events. The device manager
consists of an event handler and a communication manager.
The event handler communicates with IoT devices to detect
events and notifies the scheduling manager to reschedule data
item acquisitions. The communication manager acquires data
items from the devices on data acquisition schedule, and sends
appropriate commands to actuators if the conditions of the
rules are satisfied. Here, the communication manager measures
network latencies to each device, and keeps their distribution to
find their worst-case network latencies for the current network
environment.

When an event occurs, the scheduling manager finds out
which rules to trigger based on the event table. First, when
an event occurs, the scheduling manager inserts new entries
for the triggered rules into the evaluation status board which
contains deadlines, data items to acquire, and condition eval-
uation status. Then, the scheduling manager determines when
to acquire data items for the rules waiting to be evaluated.
Finally, the scheduling manager updates the data acquisition
schedule. Here, the framework does not prefetch the required
data items because events are sporadic and unpredictable in

TABLE I: Notation for the problem

Notation Description

R Set of rules associated with an event
ri The i-th rule in R

Dr Relative deadline of Rule r
Vr Set of data items to acquire for Rule r
vir The i-th data item in Vr

tr Time when Rule r is triggered
tEr Time when the evaluation of Rule r ends

I[v] Freshness interval of Data item v
L[v] Data acquisition latency of Data item v

the IoT.
When the IoT server receives a data item, the commu-

nication manager calculates the expiration time of the data
item with its freshness interval, and updates its value and
expiration time in the data item table. The framework evaluates
conditions with the data item and other fresh data items. If
the framework terminates the condition evaluation of a rule,
the framework updates the evaluation result in the evaluation
status board. If the result is true, the framework instructs the
communication manager to send an action command to the
target device. Finally, the scheduling manager erases the rule
from the evaluation status board.

IV. PROBLEM STATEMENT AND SOLUTION

This section examines a data acquisition scheduling problem
when the IoT framework in Section III evaluates conditions
with shared data items. Section IV-A formulates the problem
using the notation in Table I, and Section IV-B introduces
scheduling algorithms as solutions.

A. Problem Statement

A rule consists of an event, conditions and actions as defined
in Fig. 5. The event describes a situation that triggers the rule.
If the event that Rule r subscribes occurs at t0, Rule r will
be triggered at t0 (i.e., tr = t0). The conditions describe
environmental conditions in which the actions to be taken.
Each condition uses data items that sensors collect from the
user environment. In Fig. 1, Rule 1 uses the humidity and
illuminance data items to describe an environmental condition
to open the blind. This work formulates the set of data items
that Rule r uses as Vr.

Each data item has a different freshness interval and data
acquisition latency. Freshness interval is a period in which
the data item can remain valid after the last update. After
the freshness interval from the last update, the data item
becomes invalid (no longer fresh). Then, the framework should
acquire the data item again to use its value for evaluation.
Data acquisition latency is the time required to pull data from
a physical device. This work uses the notation of I[v] and
L[v] to represent the freshness interval and the data acquisition
latency of Data item v.

Let R be a set of the rules to evaluate. To evaluate the
conditions of rules in R, the framework plans to acquire data
items in

⋃
r∈R Vr. Note that the conditions of two different

rules can share the same data items. In other words, there can
be a pair of data items vr1 ∈ Vr1 and vr2 ∈ Vr2 such that
vr1 = vr2 where r1 6= r2. In the scheduling process, to reduce
data acquisition overheads while satisfying the deadlines of
rules, the framework determines which data item to acquire
first. This work formulates the problem as follows.
Problem Statement. The problem is to find a data acquisition
schedule S = ((v1, t1), (v2, t2), ..., (vm, tm)) that satisfies the
following constraints where vi is a data item to acquire and
ti is the time to acquire the data item for i = 1, ...,m:

1) Deadline constraints: Each rule’s condition evaluation
has finished before its deadline, i.e., for every r ∈ R,

tEr ≤ tr +Dr

2) Data freshness constraints: All the necessary data
items are fresh when each rule’s condition evaluation
finishes, i.e., for every r ∈ R and v ∈ Vr, there exists
(v, t) ∈ S such that

tEr ≤ t+ I[v]

For solving the problem, this work uses several assump-
tions: (i) A rule cannot be triggered when the rule is under
evaluation. (ii) The worst-case latency for acquiring a data
item is given by the IoT framework for the current network
condition. Note that different data items can have different
acquisition latencies. (iii) Relative deadline of each rule and
a freshness interval of each data item are given in advance.
(iv) The processing time for choosing a rule and ordering data
items is negligible compared to data acquisition latencies.

B. Solution
This section describes data acquisition scheduling algo-

rithms as solutions for the problem in Section IV-A. First,
this work introduces a single-rule scheduling algorithm (tLVF)
that orders data items considering the nested structure of a
rule condition. Second, this work proposes a sharing-aware
scheduling algorithm (S-tLVF) for multiple rules that avoids
reacquiring shared data items. Then, this work extends the
sharing-aware scheduling algorithm to increase data sharing
by examining more data sharing chances (PS-tLVF).

Basically, this work schedules data acquisitions for each
respective rule in parallel and modifies the schedule to increase
data sharing. Unlike EDEF-LVF [5] which schedules all data
acquisitions in a sequential order, this work schedules data
acquisitions for each rule in parallel based on two premises:
(i) for a single rule, sequential processing is generally more
efficient than parallel processing because condition evaluation
may terminate early with a partial set of data items, and (ii) for
multiple rules, sequential processing is generally less efficient
than parallel processing with fewer chances of data sharing
due to data freshness constraints.

tLVF (tree-based LVF): To schedule data acquisitions for
a single rule, this work introduces tLVF (Algorithm 1) by

Algorithm 1: tLVF, which finds an efficient acquisition
order of data items for a single condition

Input : A condition tree T of a rule
A set of data items V to acquire

Output : An order of data items O = (v1, v2, ...)
1 Ov ← Sort v ∈ V in the LVF order
2 while Ov 6= ∅ do
3 (p, Le)← ExpLatency(T,Ov)
4 L← Sort (v, l) ∈ Le in ascending order of l
5 for (v, l) ∈ Le do

// ⊕: concatenation operator
6 Otmp ← O ⊕ {v} ⊕ (Ov \ {v})
7 if Otmp meets freshness constraints then
8 Ov ← Ov \ {v}
9 O ← O ⊕ {v}

10 break
11 end
12 end
13 end

extending the existing algorithm [3] to support the nested
structure of a rule condition. The existing algorithm is not
applicable to the problem, because it only considers a con-
junction of comparison expressions like (v1 < k1)&&(v2 <
k2)&&...&&(vm > km). On the other hand, tLVF allows
the nested structure of a rule condition in the form of a tree
data structure [9], where each leaf node represents a single
comparison expression and each internal node connects two
child trees with a binary operator. Then, a condition tree T
can be defined as

T = Internal(Tleft, bop, Tright) | Leaf(v,4, k)

where bop ∈ {&&, ||}.
tLVF schedules the data acquisition order reflecting the

nested structure of a rule condition and the probability that
its evaluation will terminate early. First, tLVF calculates the
original LVF order (a data item with the longest freshness
interval first) for given the data items in V and their freshness
intervals (Line 1). Then, to increase the probability of the
early termination, tLVF invokes the ExpLatency function to
calculate the minimum expected condition evaluation latencies
for each data item (Line 3). tLVF adjusts the LVF order by
putting a data item with the lowest expected latency first if not
violating data freshness constraints (Line 7). Once some data
items are scheduled, tLVF recalculates the expected latencies
reflecting the scheduled data items at the next iteration of the
outer loop.

ExpLatency (Algorithm 2) calculates the expected latencies
of each data item when the IoT framework acquires the data
item next. Since tLVF may not choose the data item with
the lowest latencies first due to the freshness constraints,
ExpLatency calculates the minimum expected latencies for all
the data items in V assuming that tLVF chooses each data
item first.

To calculate the expected latencies, ExpLatency recursively
traverses the condition tree. For a leaf node, ExpLatency
returns the probability that the leaf node condition is true and

Algorithm 2: ExpLatency, which calculates the expected
condition evaluation latency when each data item is the
next item to acquire

Input : A condition tree T of a rule
A set of data items V to acquire

Output : The probability p that T becomes true
A list of pairs of data item and expected latency Le

1 if T = Leaf(v,4, k) then
2 if v ∈ V then
3 if v is fresh then
4 (p, Le)← (v4k, {(v, 0)})
5 else
6 (p, Le)← (P (Vv4k), {(v, L[v])})
7 end
8 else

// v is already scheduled
9 (p, Le)← (null, ∅)

10 end
11 else if T = Internal(Tl, bop, Tr) then
12 (pl, Ll)← ExpLatency(Tl, V)
13 (pr, Lr)← ExpLatency(Tr, V)
14 if Ll = ∅ then

// the left child is already scheduled
15 (p, Le)← (pr, Lr)
16 else if Lr = ∅ then

// the right child is already scheduled
17 (p, Le)← (pl, Ll)
18 else
19 lmin

l ← min({l|(v, l) ∈ Ll})
20 lmin

r ← min({l|(v, l) ∈ Lr})
21 if bop = && then
22 (p, Le)← (pl ∗ pr,

{(v, l + pl ∗ lmin
r)|(v, l) ∈ Ll} ∪

{(v, l + pr ∗ lmin
l)|(v, l) ∈ Lr})

23 else if bop = || then
24 (p, Le)← (1− (1− pl) ∗ (1− pr),

{(v, l + (1− pl) ∗ lmin
r)|(v, l) ∈ Ll} ∪

{(v, l + (1− pr) ∗ lmin
l)|(v, l) ∈ Lr})

25 end
26 end
27 end

the expected data acquisition latency. If the data item is fresh,
ExpLatency evaluates the condition with the acquired value
and forces the expected latency of the data item as 0 (Line 4).
If the data item is previously scheduled, ExpLatency returns
the empty set of expected latencies, not to affect the other parts
of the condition (Line 9). For an internal node, ExpLatency
calculates both cases when tLVF chooses the next data item
from the left or right children. For example, if bop is && and
tLVF chooses the next item from the left child, the condition
evaluation may terminate if the evaluation result of the left
child is false, or continue to evaluate the right child. Thus, the
expected latency becomes the sum of the expected latency of
the chosen data item (l) and the minimum expected latency
of the right child (pl ∗ lmin

r). ExpLatency calculates the other
case also and unions the results of the both cases.

The complexity of tLVF is O(|V |3) which is same with
that of the existing algorithm [3]. Since each ExpLatency re-
cursively invokes itself twice in a divide-and-conquer manner,

Algorithm 3: S-tLVF, schedules data acquisitions while
avoiding reacquiring shared data items

Input : Data acquisition schedule S = {(v, t, r), ...}
1 if an event occurs or a data acquisition is due then
2 Rt ← A set of triggered rules
3 for r ∈ Rt do
4 Or ← tLVF(Vr)
5 ttmp ← tr
6 for v ∈ Or do
7 S ← S ∪ (v, ttmp, r)
8 ttmp ← ttmp + L[v]
9 end

10 end
11 for (v, t, r) ∈ S such that t = tcur do
12 if t+ L[v] < ExpireAt[v] then

// delay the data item until expiring
13 Replace (v, t, r) with (v,ExpireAt[v]− L[v], r)
14 if v was already delayed once then
15 continue
16 end

// advance the other data items
17 for (v′, t′, r′) ∈ S such that (v′ 6= v) ∧ (r′ = r) do
18 Replace (v′, t′, r′) with (v′, t′ − L[v], r′)
19 end
20 else
21 Acquire Data item v
22 end
23 end
24 end

its complexity is O(|V |2) in the worst case. The complexity
of checking freshness constraint violations (Line 7 in Algo-
rithm 1) is O(|V |), and the inner loop iterates O(|V |) times.
Therefore, the complexity of tLVF is O(|V |3).

S-tLVF (Sharing-aware tLVF): On top of tLVF, this work
proposes S-tLVF (Algorithm 3) that reduces unnecessary data
acquisitions by delaying reacquisition of fresh data items until
the data items expire. When an event occurs, S-tLVF schedules
data acquisitions of triggered rules with tLVF. Then, if a data
item to acquire is fresh, S-tLVF delays acquiring the data item.
After delaying the data acquisition schedule, S-tLVF acquires
the other data items in advance while keeping the tLVF order.
In Algorithm 3, ExpireAt contains the expiration time of data
items.

Theorem 1. S-tLVF preserves the deadline satisfaction of the
original schedule by tLVF.

S-tLVF modifies the original schedule by delaying fresh data
items and advancing the other data items for each rule.

Lemma 1.1. In S-tLVF, delaying fresh data items preserves
the deadline satisfaction of original schedule.

Proof. Let r be the rule in interest and tEr be the evaluation
time of Rule r when acquiring data items with the original
schedule. Assume that S-tLVF delays the acquisition of Data
item v from t to t′ for Rule r.

• Case i) tEr < t+ L[v]:
Since the evaluation of Rule r finishes while Data item v

𝑡!

An event occurs

𝑡!"

𝑣!! 𝑣!" 𝑣!#Data Acquisition
Schedule

Freshness
Period

𝐿[𝑣!!] 𝐿[𝑣!"]

Rule 1

𝑣%% 𝐼[𝑣!!]
𝐼[𝑣!#]𝑣%&

𝑣%' 𝐼[𝑣!"]

𝐿[𝑣!#]

(a) LVF

𝑡!"𝑡#"

𝑣!! 𝑣!"𝑣!#Data Acquisition
Schedule

Freshness
Period

Rule 1

𝑣!! 𝐼[𝑣!!]

𝐼[𝑣!#]𝑣!"

𝑣!#

Early terminated

𝑣#! 𝑣##Rule 2 𝑣#"

𝑣"!

𝑣""
𝐼[𝑣#!]

𝐼[𝑣##]

𝑡# = 𝑡!

𝑣"# 𝐼[𝑣#"]

(b) tLVF

𝑡!"𝑡# = 𝑡! 𝑡#"

𝑣!! 𝑣!"𝑣!#Data Acquisition
Schedule

Freshness
Period

Rule 1

𝑣!! = 𝑣"# 𝐼[𝑣!! = 𝑣#"]

𝐼[𝑣!#]𝑣!"

𝑣!#

𝑣#! 𝑣##Rule 2

𝑣"!

𝑣""
𝐼[𝑣#!]
𝐼[𝑣##]

𝑣#"

(c) S-tLVF

Fig. 6: Timeline examples for LVF, tLVF, and S-tLVF

is fresh, delaying acquiring Data item v does not change
the evaluation time of Rule r.

• Case ii) tEr ≥ t+ L[v]:
Based on the hypothetical assumption that the original
schedule satisfies the deadline constraint, so the evalua-
tion must finish before Data item v expires, i.e.,

tEr ≤ t+ I[v]

After delaying, the expiration time of Data item v length-
ens from t+ I[v] to t′ + I[v], so tEr will not change.

Therefore, delaying the acquisitions of fresh data items will
not change tEr and preserves the deadline satisfaction.

Lemma 1.2. In S-tLVF, advancing the other data items
preserves the deadline satisfaction of original schedule.

Proof. Proof by contradiction.
Assume that the evaluation misses the deadline with the new

schedule. Let Vr the set of necessary data items for evaluating
Rule r. Additionally, let t′v and t′Er be the times when the
framework acquires Data item v ∈ Vr and when the evaluation
finished with the new schedule, respectively.

Due to the assumption,

t′Er > tEr

Algorithm 4: ForwardSharing, which delays acquiring a
shared data item of which acquisition is undergoing

Input : Data acquisition schedule Sr = {(v1, t1), ...} for Rule r
Undergoing data acquisition schedule Su = {(v1, t1), ...}
Maximum delay tmax

d allowed for Rule r

Output : tfd : A delay for forward sharing
1 Va ← {v|(v, t) ∈ Sr}, Vu ← {v|(v, t) ∈ Su}
2 (v1, t1)← the earliest data acquisition in Sr

3 tfd ← 0
4 for v ∈ Va ∩ Vu do
5 tv ← the arrival time of v in Su

6 ttmp
d ← tv − t1

7 if ttmp
d ≤ tmax

d then
8 tfd ← max(tfd , t

tmp
d)

9 end
10 end

S-tLVF advances data acquisition time of the other items, and
thus

t′v ≤ tv

Since the evaluation finishes when the framework acquires the
last data item, for the original and new schedules,

tEr = max({tv + L[v]|v ∈ Vr})

t′Er = max({t′v + L[v]|v ∈ Vr})

Because t′v ≤ tv ,

max({t′v + L[v]|v ∈ Vr}) ≤ max({tv + L[v]|v ∈ Vr})

t′Er ≤ tEr

Since there is a contradiction with the assumption, advancing
the other data items preserves the deadline satisfaction of
original schedule in S-tLVF.

Proof. With Lemma 1.1 and Lemma 1.2, delaying fresh data
items and advancing the other data items in S-tLVF preserve
the deadline satisfaction of the original schedule. Therefore,
S-tLVF preserves the deadline satisfaction of the original
schedule.

Fig. 6 shows the timeline graphs when LVF, tLVF, and
S-tLVF schedule data acquisitions for two rules (Rule 1
and Rule 2). LVF acquires the data item with the longest
freshness interval first without considering the nested structure
nor shared data items (Fig. 6(a)). On the other hand, tLVF
reflects the nested structure of conditions in the scheduling.
Although v31 has a longer freshness interval than v21 , tLVF
schedules v21 earlier than v31 and increases the chance of early
evaluation termination (Fig. 6(b)). S-tLVF schedules data items
considering data sharing among rules. Since Rule 1 and Rule
2 can share v32 , S-tLVF delays reacquiring v32 and acquires v22
in advance. Advancing the acquisition schedule of v22 shortens
the evaluation termination time, tE2 (Fig. 6(c)).

The computational complexity of S-tLVF is O(|R||V |3).
Since the complexity of tLVF is O(|V |3), and S-tLVF executes

Algorithm 5: BackwardSharing, which delays acquiring
a shared data item considering future data sharing

Input : Rule r to test backward sharing
Original data acquisition schedule S = {(v1, t1, r1), ...}
Maximum delay tmax

d allowed for Rule r
Output : A delay tbd required for backward sharing

A rule rb that enables backward sharing
1 Va ← {v′|r′ = r, (v′, t′, r′) ∈ S}
2 (v1, t1, r)← the earliest data acquisition for Rule r in S
3 tbd ← 0
4 for (v′, t′, r′) ∈ S do
5 if (v′ = v1) ∧ (t′ > t1 + I[v1]) ∧ (r′ 6= r) then
6 if ∃(v′′, t′′, r′′) ∈ S, (v′′ ∈ Va) ∧ (t′′ < t′) ∧ (r′′ = r′)

then
7 continue
8 end
9 ttmp

d ← t′ − (t1 + I[v1])

10 if (ttmp
d ≤ tmax

d) ∧ {(tbd = 0) ∨ (ttmp
d < tbd)} then

11 (tbd, rb)← (ttmp
d , r′)

12 end
13 end
14 end

𝑡!"

𝑣!! 𝑣!"𝑣!#

𝑣## 𝑣#"

𝑡$"

Rule 1

Rule 2
𝐼[𝑣!!]
𝐼[𝑣!#]

𝐼[𝑣##]

𝑣#!

𝐼 𝑣#! = 𝑣!"

𝐼[𝑣#"]

𝑡!"

𝑣!! 𝑣!"𝑣!#

𝑣## 𝑣#"

𝑡$"

Rule 1

Rule 2

𝐼[𝑣##]

𝑣#!

𝐼[𝑣#! = 𝑣!"]

𝐼[𝑣#"]

≈ 𝐼[𝑣!!]

≈

(a) Forward sharing

𝑡!"

𝑣!! 𝑣!"𝑣!#

𝑣## 𝑣#"

𝑡$"

Rule 1

Rule 2
𝐼[𝑣!! = 𝑣#$]

𝐼[𝑣!#]
𝐼[𝑣!"]

𝐼[𝑣##]

𝑣#!

𝐼[𝑣#!]

𝐼[𝑣#"]

≈

𝑣#$

𝑡!"

𝑣!! 𝑣!"𝑣!#

𝑣## 𝑣#"

𝑡$"

Rule 1

Rule 2

𝐼[𝑣!#]
𝐼[𝑣!"]

𝐼[𝑣##]

𝑣#!

𝐼[𝑣#!]

𝐼[𝑣#"]

≈

𝑣#$

≈ 𝐼[𝑣!! = 𝑣#$]

(b) Backward sharing

Fig. 7: Examples of forward and backward data sharing

tLVF for each rule (Line 5 in Algorithm 3), its complexity
becomes O(|R||V |3). Although S-tLVF adjusts the original
schedule to reduce redundant data acquisitions (Line 11 to
Line 23), its complexity is O(|R||V |2) only. Therefore, the
complexity of S-tLVF is O(|R||V |3).

PS-tLVF (Predictive S-tLVF): To enlarge the coverage
of the S-tLVF algorithm, this work proposes PS-tLVF that
extends S-tLVF to consider future data sharing. Although
S-tLVF is simple and effective, there still exist additional
opportunities that can reduce unnecessary data acquisitions.
First, the scheduler can delay acquiring a shared data item
if another rule is acquiring the data item at the moment
(forward sharing, Algorithm 4). Since the condition evaluation

T H

U L S

T

H

U

L

S
T

H

U

L

S

Wemo

Switch
Multipurpose

Sensor

Motion

Sensor

Hue

Bulb

Fig. 8: Smart office testbed (T©, H©: Temperature-humidity
sensor, U©: Ultrasonic sensor, L©: Light sensor, S©: Sound
sensor)

may terminate early by the shared item, forward sharing can
reduce unnecessary data acquisitions. Second, the scheduler
can delay acquiring a shared data item to make the data
item remain fresh until other rules start to acquire the data
item (backward sharing, Algorithm 5). In the both cases, PS-
tLVF conservatively delays data acquisitions by setting the
maximum time delay tmax

d as the gap between the minimum
time constraint (tmin

c) and the last acquisition time for a rule:

tmin
c ← min({tr +Dr} ∪

{
ExpireAt(v)|v ∈ V f

r

}
∪

{t+ I[v]|(v, t, r) ∈ Su})

where V f
r is the set of fresh data items in Vr and Su is the

undergoing data acquisition schedule.
Fig. 7 shows how PS-tLVF additionally reduces unnecessary

data acquisitions compared with S-tLVF. For Fig. 7a and
Fig. 7b, the left and right timeline graphs show the schedules
by the S-tLVF and PS-tLVF algorithms, respectively. Fig. 7(a)
shows an example case of forward sharing. With S-tLVF, the
framework finishes the condition evaluation of Rule 1 after
acquiring {v11 , v21}. However, PS-tLVF delays the acquisition
of v21 , allows condition evaluation to finish with {v11 , v31 = v12},
and reduces the unnecessary acquisition of v21 . Fig. 7(b)
shows an example case of backward sharing. Considering
that Rule 2 requires v42 = v11 , delaying the acquisition of v11
and subsequent data acquisitions can reduce the unnecessary
acquisition of v42 .

V. EVALUATION

This work evaluates how the proposed algorithms in Sec-
tion IV-B reduce data acquisition counts and deadline misses
by simulating the framework model in Section III with real-
world IoT data. To obtain realistic IoT data, this work con-
structs a smart office testbed with 19 IoT devices listed in
Table II. In the table, FI and AL are abbreviations of ‘Fresh-
ness Interval’ and ‘Data Acquisition Latency’. As aggregators,
this work deploys three Raspberry Pi 3 boards. Each board
has a temperature-humidity sensor, an ultrasonic sensor, a
light sensor, and a sound sensor. This work implements a
SmartThings [1] application to catch all the events on the
SmartThings-compatible devices. Fig. 8 shows the floor plan
of the smart office testbed with the positioning of the IoT
devices.

TABLE II: Device specification of the testbed

Device # Data Item Type Range FI (s) AL (s)

SmartSense
Motion Sensor

2 Motion Binary [0,1] 7 3
Temperature Integer [5,30] 30 3

SmartSense
Multipurpose
Sensor

2 Contact Binary [0,1] 10 3

Temperature Integer [5,30] 30 3

Temperature-
Humidity Sensor 3 Temperature Integer [5,30] 30 1

Humidity Integer [10,60] 30 1

Ultrasonic Sensor 3 Distance Float [0,500] 5 1

Light Sensor 3 Light level Integer [0,700] 10 1

Sound Sensor 3 Sound level Integer [200,500] 5 1

Philips Hue 1 Switch Binary [0,1] 15 5

Belkin Wemo
Switch 2 Switch Binary [0,1] 15 5

On the testbed, this work collects real-time values of 26
data items for 144 hours with one agent. The agent performs
several prescribed behaviors in the office such as opening the
window or turning on the radio, and the devices observed the
behaviors. Although some IoT devices provide multiple data
items, the server acquires data items from the same device
individually in the simulation. We have made our smart office
dataset publicly available via GitHub [11].

A. Methods

Using the collected data on the smart office testbed, this
work simulates the framework model in Section III with the
proposed algorithms. To show that the proposed scheduling
algorithms effectively schedule data item acquisitions for
evaluating multiple rules, this work compares the scheduling
algorithms with a baseline scheduling algorithm in terms of
deadline miss and data acquisition count:
• LVF (Least Volatile item First): schedules each rule in

parallel by choosing a data item with the longest freshness
interval first.

• tLVF (tree-based Least Volatile item First): schedules
each rule in parallel with the tLVF algorithm (Algo-
rithm 1).

• S-tLVF (Sharing-aware tree-based Least Volatile item
First): schedules each rule in parallel with the tLVF
algorithm and adjusts the original schedule to avoid
reacquiring shared data items (Algorithm 3).

• PS-tLVF (Predictive Sharing-aware tree-based Least
Volatile item First): optimizes S-tLVF with forward and
backward sharing (Algorithm 4 and 5) to further reduce
unnecessary data acquisitions by considering more data
sharing cases.

For the algorithms based on tLVF, this work uses the normal
distributions of data item values in the dataset to calculate the
probability that a condition becomes true.

In the evaluation, this work specifies freshness intervals
and data acquisition latencies for data items as in Table II.
This work generates two test cases such as a large test case

0

0.2

0.4

0.6

0.8

1

tLVF S-tLVF PS-tLVF

N
or

m
al

iz
ed

Ac

qu
is

iti
on

 C
ou

nt

Large Smal l

(a) Different test cases

0

0.2

0.4

0.6

0.8

1

1⨉ 1.5⨉ 2⨉ 2.5⨉ 3⨉

N
or

m
al

iz
ed

Ac

qu
is

iti
on

 C
ou

nt

LVF tLVF
S-tLVF PS-tLVF

(b) Different freshness intervals

Fig. 9: Normalized data acquisition count

that uses all the 26 data items and a small test case that
uses only 10 of the 26 data items. This work also manually
specifies 10 events that a rule can subscribe. In addition, This
work automatically generates 200 rules by randomly choosing
values for defining a rule within the predefined range of data
item values. For example, the condition value for a humidity
item is chosen between 10 to 60 based on the collected data.
Each rule condition is in a conjunctive normal form, which is a
conjunction (the and operator ‘&&’) of clauses. Each clause
is a single comparative expression or a disjunction (the or
operator ‘‖’) of comparative expressions. Therefore, skipping
some data acquisitions is possible when one of the clauses
is false or one of the comparative expressions in a clause is
true. Here, the number of data items used in a rule varies from
1 to 10. For each rule, this work randomly sets the relative
deadline considering the total latency of acquiring all the data
items.

This work analyzes data sharing opportunities in the two test
cases. First, each rule shares at least one data item with 105
and 154 other rules on average in the large and small test cases,
respectively. Among the rules that subscribe to the same event,
each rule shares at least one data item with 10 and 15 other
rules on average in the large and small test cases, respectively.
Second, each rule shares 1.5 and 2.0 data items on average
with another rule in the large and small test cases, respectively.
For example, Rule 73 (sound.desk > 335 || temperature.door
< 16) and Rule 79 (motion.door = none && sound.desk <
293) share one data item such as the sound level around the
desk in the large test case.

When an event occurs, the simulator starts to schedule data
acquisitions for the rules that the event triggers. Each event
can occur at multiple times during the simulation. Although
the simulator schedules the same rules for the same event,
the scheduling results can be different across different event
occurrences because the results of condition evaluation may
differ according to data items values at the moment. In other
words, the framework may terminate the condition evaluation
early according to data item values.

During the simulation, this work measures data acquisition
counts and deadline miss ratios. The data acquisition count is
the total number of communications between the server and
devices, and the deadline miss ratio is the ratio of missed rules
to the total triggered rules.

0

0.05

0.1

0.15

LVF tLVF S-tLVF PS-tLVF

D
ea

dl
in

e
M

is
s

R
at

io

Large Smal l

(a) Different test cases

0
0.02
0.04
0.06
0.08
0.1

0.12

1⨉ 1.5⨉ 2⨉ 2.5⨉ 3⨉

D
ea

dl
in

e
M

is
s

R
at

io

LVF tLVF
S-tLVF PS-tLVF

(b) Different freshness intervals

Fig. 10: Deadline miss ratio

B. Results

Data acquisition count: For LVF, tLVF, S-tLVF, and PS-
tLVF, this work measures data acquisition counts with the large
and small test cases. Fig. 9(a) shows the normalized acquisi-
tion counts of tLVF, S-tLVF, and PS-tLVF to LVF. Compared
with LVF, tLVF reduces the number of data acquisitions by
17.2% and 24.9%, and S-tLVF reduces the number by 31.9%
and 34.7% for the large and small test cases respectively.
Here, for the small test case, S-tLVF reduces data acquisition
counts more than the large test case because each rule shares
more data items with others in the small test case than the
large test case. Thus, if a user installs more and more rules
in an IoT environment, there will be more chances for data
sharing, and S-tLVF will become more effective. PS-tLVF
further reduces the number of data acquisitions by 33.1% and
34.7% compared with LVF for the large and small test cases
respectively. It is because PS-tLVF can find the chances of
forward and backward sharing for large test case but not for
small case.

Fig. 9(b) shows how the normalized data acquisition counts
of LVF, tLVF, S-tLVF, and PS-tLVF change as scaling the
freshness intervals of data items for the large test case. The
numbers on the x-axis indicate the multipliers applied to the
original freshness intervals. This work normalizes each total
data acquisition count to the total data acquisition count of the
original freshness intervals (1×). The evaluation result shows
that the total acquisition count decreases as the freshness
intervals increase because data items are more likely to be
shared with longer freshness intervals for all the algorithms.
Moreover, the result also shows that S-tLVF and PS-tLVF send
less data acquisition requests than LVF and tLVF regardless
of the freshness intervals.

Deadline miss ratio: This work measures the deadline miss
ratio of LVF, tLVF, S-tLVF, and PS-tLVF for the large and
small test cases. Fig. 10(a) shows the deadline miss ratio of
LVF, tLVF, S-tLVF, and PS-tLVF. Compared with LVF, tLVF
reduces the deadline miss ratio by 48.0% and 32.4%, and S-
tLVF reduces the deadline miss ratio by 50.2% and 48.3% for
the large and small test cases, respectively. The results show
that tLVF and S-tLVF do not only reduce the data acquisition
counts, but also reduce the deadline misses as Theorem 1
implies. With the forward and backward sharing algorithms,
PS-tLVF slightly reduces the deadline miss ratio by 50.2%

0

20000

40000

60000

80000

LVF tLVF S-tLVF PS-tLVF

D
at

a
Ac

qu
is

iti
on

 C
ou

nt

Shared Monopolized Unnecessary

(a) Large

0

5000

10000

15000

20000

25000

LVF tLVF S-tLVF PS-tLVF

D
at

a
Ac

qu
is

iti
on

 C
ou

nt

Shared Monopolized Unnecessary

(b) Small

Fig. 11: Data acquisition count breakdown

and 48.3% compared with LVF for the large and small test
cases, respectively. By exploring more sharing cases, PS-tLVF
finds more chances of early termination than S-tLVF, and thus
slightly reduces unnecessary data acquisitions and deadline
misses especially for the large test case.

Fig. 10(b) shows how the deadline miss ratio of LVF, tLVF,
S-tLVF, and PS-tLVF changes as scaling the freshness intervals
of data items for the large test case. The evaluation result
shows that the miss ratio tends to decrease as the freshness
intervals increase for all the algorithms. For LVF, it is obvious
to have more chances that acquired data items are still fresh at
the moment of condition evaluation. For S-tLVF and PS-tLVF,
it is because that the longer freshness intervals give the more
chances for S-tLVF and PS-tLVF to find sharable data items
and meet deadlines by the early termination.

Optimality: This work evaluates the optimality of the
scheduling algorithms in terms of data acquisition count. This
work measures how many unnecessary data acquisitions still
remain for each scheduling algorithm. Fig. 11 shows the
breakdown of data acquisitions over the total data acquisitions.
In the figure, ‘Unnecessary’ indicates data acquisitions never
used in evaluating rules. Note that ‘Unnecessary’ includes data
acquisitions that cannot contribute to the early termination
of rules. Similarly, ‘Monopolized’ and ‘Shared’ indicate data
acquisitions used in evaluating a single rule or multiple rules.

As shown in Fig. 11, S-tLVF and PS-tLVF successfully
reduce the amount of unnecessary data acquisitions compared
with LVF. In other words, S-tLVF and PS-tLVF increase data
sharing among rules. However, S-tLVF and PS-tLVF still have
unnecessary data acquisitions. Here, since early termination
is determined after acquiring data items, finding an optimal
acquisition order that leads to the most early termination of
condition evaluation is almost infeasible.

Data acquisition pattern: This work analyzes how the
data acquisition patterns of the scheduling algorithms differ
by measuring concurrent data acquisition counts for each
scheduling algorithm. During the simulation, the maximum
number of concurrent data acquisitions is 14, 14, 10, and 10
for LVF, tLVF, S-tLVF, and PS-tLVF, respectively. This result
implies that S-tLVF and PS-tLVF can be more efficient than
LVF and tLVF in terms of network bandwidth usage.

Fig. 12 illustrates concurrent data acquisition counts for a
specific period. The results show that the acquisition patterns
of the scheduling algorithms are different. Blue and red
boxes indicate the periods where S-tLVF and PS-tLVF reduce

0
2
4
6
8

10
12

6:36:30 PM 6:37:13 PM 6:37:57 PM 6:38:40 PM 6:39:23 PM

C
on

cu
rre

nt

Ac
qu

is
iti

on
 C

ou
nt

(a) LVF

0
2
4
6
8

10
12

6:36:30 PM 6:37:13 PM 6:37:57 PM 6:38:40 PM 6:39:23 PM

C
on

cu
rre

nt

Ac
qu

is
iti

on
 C

ou
nt

(b) tLVF

0
2
4
6
8

10
12

6:36:30 PM 6:37:13 PM 6:37:57 PM 6:38:40 PM 6:39:23 PM

C
on

cu
rre

nt

Ac
qu

is
iti

on
 C

ou
nt

(c) S-tLVF

0
2
4
6
8

10
12

6:36:30 PM 6:37:13 PM 6:37:57 PM 6:38:40 PM 6:39:23 PM

C
on

cu
rre

nt

Ac
qu

is
iti

on
 C

ou
nt

(d) PS-tLVF

Fig. 12: Concurrent data acquisition count

data acquisition counts in the evaluation, respectively. The
most remarkable point is that S-tLVF and PS-tLVF delay
the original schedule to avoid unnecessary data acquisitions,
showing flatter patterns than tLVF in Fig. 12.

VI. DISCUSSION

Though S-tLVF and PS-tLVF successfully reduce unneces-
sary data acquisitions, S-tLVF and PS-tLVF cannot guarantee
that data sharing is maximal. The optimal scheduling varies
depending on the actual values of data items due to early
termination. Since S-tLVF and PS-tLVF schedule data items to
acquire data items without knowing the values, the algorithms
are suboptimal. However, this work can extend the algorithms
to consider the probability of early termination of other rules
when deciding whether to share a data item or not.

This work also leaves several interesting issues in data
acquisition scheduling as future work. First, this work assumes
that all the rules are equally important. However, the priority
of rules can differ according to their semantics. For example,
some rules related to safety (e.g., fire alarm) may be more
important than the others. Second, this work notices race
conditions can exist among rules. Depending on the data
arrival order from multiple sensors, rule evaluation time can
change. It can cause unnecessary data acquisitions, but it will
not cause constraint violations.

VII. RELATED WORK

Data acquisition scheduling with freshness constraints:
Scheduling algorithms for decision-making problems [3]–[5]
find an optimal ordering of data acquisitions to make decisions
before deadlines if each data item has a different freshness
interval. Scheduling data acquisitions to meet both freshness

and deadline constraints is important to provide real-time
decision making.

To meet the real-time constraints, previous work proposes
optimal scheduling for a single decision task [3], [4] or
multiple decision tasks [5]. However, previous work regards
the decision tasks are independent of each other although they
may share the same data items. If a currently fresh data item
will not expire until another task that shares the same data item
finishes, reacquiring the data item for the task is unnecessary.
To increase data acquisition efficiency, this work proposes a
scheduling algorithm that is aware of data item sharing while
satisfying the real-time constraints.

In the domain of real-time database systems, the freshness
of a data item is one of the important factors that affect
the quality of query processing [12]. Previous work [13]–
[15] focuses on data updates of real-time databases to meet
freshness and deadline constraints. Adelberg et al. [13] point
out that the real-time database should balance data freshness
and transaction deadline, and suggest a transaction scheduling
method to keep data fresh without violating the deadline.
Lee et al. [14] propose periodic, aperiodic, and on-demand
update schemes to meet freshness and time constraints, and
compare the complexity and performance of their schemes.
Xiong et al. [15] defer the sampling time (update period) of
transactions as late as possible to reduce the number of updates
and processor workload while preserving the temporal validity
of data and meeting relative deadlines.

RTEDBS [16] and QeDB [17] are embedded real-time
databases that aim to meet both deadline constraints and data
freshness constraints of queries on resource-constrained em-
bedded systems. These database systems dynamically adjust
the amount of workloads and size of buffer cache between
I/O devices and CPU to meet deadline constraints and reduce
I/O overheads. While previous work does not change the data
acquisition order for given queries, this work can reduce I/O
overheads by modifying the data acquisition order.

Data sharing for multi-query optimization: To process
multiple queries efficiently, previous work has proposed multi-
query optimization techniques for traditional database sys-
tems [18]–[20] and wireless sensor networks [21]–[24].

Roy et al. [18] propose methods to reduce duplicated com-
putations by extracting common sub-expressions from multiple
queries and reusing the computed result. Dalvi et al. [19]
suggest methods to pipeline the evaluation of a sub-expression
to reduce multiple evaluation of common sub-expressions and
duplicated acquisition of the results of the sub-expressions.
Instead of extracting common sub-expressions from multiple
queries, MiniTasking [20] exploits data sharing among concur-
rent queries to improve temporal locality by batching queries
and scheduling operators. However, the previous work does
not consider data freshness.

Based on an acquisitional query processing system such
as TinyDB [25], [26], previous work [21]–[24] applies multi-
query optimizations into wireless sensor networks. Trigoni et
al. [21] suggest algorithms that remove duplicated and unnec-
essary data transmission from multiple queries by considering

the topology of installed sensors. Müller and Alonso [22]
propose algorithms that merge multiple user queries into a
network query and decide common data sampling rate of the
user queries. Xiang et al. [23], [24] propose Two-Tier Multiple
Query Optimization (TTMQO) that calculates benefits of
merging queries and eliminates duplicated data transmissions
by considering shared structures of wireless sensor networks.
Although previous work optimizes multiple queries to re-
duce communication and energy consumptions considering
resource-constrained sensor networks, they only focus on how
to eliminate redundant operations without concerning data
freshness that affects the quality of query responses.

Prediction-based data acquisition scheduling: Value pre-
diction can be useful to optimize data acquisition or query
scheduling by estimating a data value without retrieving the ac-
tual value. Previous work [6], [7], [9], [27]–[31] has proposed
real-time data acquisition systems that exploit value prediction.

Recent publications [6], [7], [9], [31] have focused on
scheduling data acquisitions in the rule-based IoT systems
using sensor value prediction. RT-IFTTT [9] is a real-time
IoT framework that dynamically changes polling intervals of
sensors by predicting whether a condition will be satisfied
or not after a certain interval. If the framework expects
a condition is likely to be satisfied soon, it shortens the
polling interval to meet deadline constraints. Also, there have
been frameworks that exploit logical contexts [31] or boolean
expressions of conditions [6], [7] to reduce evaluation costs
with sensor value prediction. If a context or a condition is
likely to be true with the prediction, the evaluation of other
contradicting contexts or conditions may be skippable. By
applying the methods [6], [7], [9], [31], this work can improve
the proposed scheduling algorithms.

Prediction-based data acquisition scheduling has also
been widely discussed in sensor networks and real-time
databases [27]–[30]. BBQ [27] and Ken [28] are database
systems that optimize query paths and decide the order of
sensors to visit in multi-hop sensor networks with sensor value
prediction; the former adopts pull-based acquisitions, and the
latter allows push-based event detection. Other data acquisition
scheduling schemes [29], [30] calculate trade-offs of using
predictions in terms of communication and energy costs and
adaptively decide prediction schemes and sensors to observe.

VIII. CONCLUSION

In the IoT, different rules can share the same data items;
in other words, the conditions of different rules are correlated
in terms of data item acquisition. However, previous work on
data acquisition scheduling assumes the condition evaluation
of each rule is independent of each other. This work proposes
S-tLVF, a sharing-aware data acquisition scheduling algorithm
that efficiently evaluates correlated tree-structured conditions
in multiple rules within a predefined deadline. Using the col-
lected data in the read-world IoT environment, this work shows
that S-tLVF reduces the number of data acquisition requests
and deadline miss ratio by 31.9% and 50.2% respectively
compared to the previous work.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and shepherd for their
valuable feedback. This research was supported by NRF-
2015M3C4A7065646, NRF-2017R1C1B3009332, IITP-2017-
0-00195 and IITP-2018-0-01392 through the National Re-
search Foundation of Korea (NRF) and the Institute of Infor-
mation and Communication Technology Planning and Evalua-
tion (IITP) funded by the Ministry of Science and ICT. Hanjun
Kim is the corresponding author of this paper.

REFERENCES

[1] “SmartThings,” http://www.smartthings.com.
[2] “IFTTT,” https://ifttt.com.
[3] S. Hu, S. Yao, H. Jin, Y. Zhao, Y. Hu, X. Liu, N. Naghibolhosseini,

S. Li, A. Kapoor, W. Dron, L. Su, A. Bar-Noy, P. Szekely, R. Govindan,
R. Hobbs, and T. F. Abdelzaher, “Data Acquisition for Real-Time
Decision-Making under Freshness Constraints,” in 2015 IEEE Real-Time
Systems Symposium, 2015, pp. 185–194.

[4] J. E. Kim, T. Abdelzaher, L. Sha, A. Bar-Noy, R. Hobbs, and W. Dron,
“On Maximizing Quality of Information for the Internet of Things: A
Real-Time Scheduling Perspective (Invited Paper),” in Proceedings of
the IEEE 22nd International Conference on Embedded and Real-Time
Computing Systems and Applications, 2016, pp. 202–211.

[5] J. E. Kim, T. Abdelzaher, L. Sha, A. Bar-Noy, and R. Hobbs, “Sporadic
Decision-Centric Data Scheduling with Normally-off Sensors,” in 2016
IEEE Real-Time Systems Symposium (RTSS), 2016, pp. 135–145.

[6] T. Abdelzaher, M. T. A. Amin, A. Bar-Noy, W. Dron, R. Govin-
dan, R. Hobbs, S. Hu, J. E. Kim, J. Lee, K. Marcus, S. Yao, and
Y. Zhao, “Decision-Driven Execution: A Distributed Resource Manage-
ment Paradigm for the Age of IoT,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), 2017, pp.
1825–1835.

[7] J. Lee, K. Marcus, T. Abdelzaher, M. T. A. Amin, A. Bar-Noy, W. Dron,
R. Govindan, R. Hobbs, S. Hu, J.-E. Kim, L. Sha, S. Yao, and Y. Zhao,
“Athena: Towards Decision-Centric Anticipatory Sensor Information
Delivery,” Journal of Sensor and Actuator Networks, vol. 7, no. 1, 2018.

[8] “Microsoft Flow,” https://flow.microsoft.com.
[9] S. Heo, S. Song, J. Kim, and H. Kim, “RT-IFTTT: Real-Time IoT

Framework with Trigger Condition-Aware Flexible Polling Intervals,”
in 2017 IEEE Real-Time Systems Symposium (RTSS), 2017, pp. 266–
276.

[10] “SmartThings Comunity,” https://community.smartthings.com/c/projects-
stories/created-smart-apps.

[11] “Smart Office Dataset,” https://github.com/corelab-src/smart-office-
dataset.

[12] K. Ramamritham, “Real-time Databases,” Distributed and Parallel
Databases, vol. 1, no. 2, pp. 199–226, April 1993.

[13] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying Update Streams
in a Soft Real-time Database System,” in Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data, 1995, pp.
245–256.

[14] C.-G. Lee, Y.-K. Kim, S. H. Son, S. L. Min, and C. S. Kim, “Efficiently
Supporting Hard/Soft Deadline Transactions in Real-Time Database
Systems,” in Proceedings of 3rd International Workshop on Real-Time
Computing Systems and Applications, 1996, pp. 74–80.

[15] M. Xiong, S. Han, and K.-Y. Lam, “A Deferrable Scheduling Algorithm
for Real-Time Transactions Maintaining Data Freshness,” in 26th IEEE
International Real-Time Systems Symposium (RTSS’05), 2005, pp. 11–
37.

[16] W. Kang, S. H. Son, J. A. Stankovic, and M. Amirijoo, “I/O-Aware
Deadline Miss Ratio Management in Real-Time Embedded Databases,”
in 28th IEEE International Real-Time Systems Symposium (RTSS 2007),
2007, pp. 277–287.

[17] W. Kang, S. H. Son, and J. A. Stankovic, “QeDB: A Quality-Aware
Embedded Real-Time Database,” in 2009 15th IEEE Real-Time and
Embedded Technology and Applications Symposium, 2009, pp. 108–117.

[18] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, “Efficient and extensi-
ble algorithms for multi query optimization,” in Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’00, 2000, pp. 249–260.

[19] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan, “Pipelining
in multi-query optimization,” in Proceedings of the Twentieth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, ser. PODS ’01, 2001, pp. 59–70.

[20] Y. Zhang, Z. Chen, and Y. Zhou, “Minitasking: Improving cache
performance for multiple query workloads,” in Proceedings of the
7th International Conference on Advances in Web-Age Information
Management, ser. WAIM ’06. Berlin, Heidelberg: Springer-Verlag,
2006, pp. 287–299.

[21] N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman, “Multi-
query optimization for sensor networks,” in Proceedings of the First
IEEE International Conference on Distributed Computing in Sensor
Systems, ser. DCOSS’05. Berlin, Heidelberg: Springer-Verlag, 2005,
pp. 307–321.

[22] R. Muller and G. Alonso, “Efficient sharing of sensor networks,” in 2006
IEEE International Conference on Mobile Ad Hoc and Sensor Systems,
Oct 2006, pp. 109–118.

[23] S. Xiang, H. B. Lim, and K.-L. Tan, “Impact of multi-query optimization
in sensor networks,” in Proceedings of the 3rd Workshop on Data
Management for Sensor Networks: In Conjunction with VLDB 2006,
ser. DMSN ’06, 2006, pp. 7–12.

[24] S. Xiang, H. B. Lim, K. Tan, and Y. Zhou, “Two-tier multiple query
optimization for sensor networks,” in 27th International Conference on
Distributed Computing Systems (ICDCS ’07), June 2007, pp. 39–39.

[25] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The design
of an acquisitional query processor for sensor networks,” in Proceedings
of the 2003 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’03, 2003, pp. 491–502.

[26] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
An acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, Mar. 2005.

[27] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and
W. Hong, “Model-driven Data Acquisition in Sensor Networks,” in
Proceedings of the Thirtieth International Conference on Very Large
Data Bases - Volume 30, 2004, pp. 588–599.

[28] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong, “Approximate
Data Collection in Sensor Networks Using Probabilistic Models,” in
Proceedings of the 22Nd International Conference on Data Engineering,
2006, pp. 48–59.

[29] B. Gedik, L. Liu, and P. S. Yu, “ASAP: An Adaptive Sampling Approach
to Data Collection in Sensor Networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 18, no. 12, pp. 1766–1783, Dec 2007.

[30] H. Jiang, S. Jin, and C. Wang, “Prediction or Not? An Energy-Efficient
Framework for Clustering-Based Data Collection in Wireless Sensor
Networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 6, pp. 1064–1071, June 2011.

[31] S. Nath, “ACE: Exploiting Correlation for Energy-efficient and Con-
tinuous Context Sensing,” in Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, 2012, pp.
29–42.

